全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

基于负关联度的DGA故障诊断分析

DOI: 10.13335/j.1000-3673.pst.2015.09.038, PP. 2627-2632

Keywords: 溶解气体分析,三比值法,关联度,故障诊断

Full-Text   Cite this paper   Add to My Lib

Abstract:

三比值法是电力变压器进行潜伏性故障诊断的有效方法之一,但该方法存在缺码问题,并且对位于比值边界附近的数据易造成误判。在对大量溶解气体分析(dissolvedgasanalysis,DGA)数据整理分析的基础上,发现同种故障类型的数据之间,H2、CH4、C2H6、C2H4、C2H2这5种故障气体变化折线具有较强的相似性,即对同种故障的2条数据,从一条数据到另一条数,5种故障气体之间倾向于同时增加或者同时减小,而不同故障类型的数据之间,折线容易出现相反的变化,相似性差。以此规律为基础,对已有的斜率关联度进行分析探讨,对其所能刻画的斜率区间过窄的问题进行了改进,构建了负关联度计算方法,采用该方法定量分析故障气体折线的相似性,并进行故障诊断。该方法摒除了比值法的思想,保留了DGA的全部信息,能对变压器故障进行判断识别,在一定程度上克服了三比值法的缺码问题,以及在边界附近误判的问题。该方法为DGA分析提供了新的思路。实例验证了该方法的有效性。

References

[1]  GB/T 7252—2001变压器油中溶解气体分析和判断导则[S].
[2]  尹金良,刘玲玲.代价敏感相关向量机的研究及其在变压器故障诊断中的应用[J].电力系统自动化设备,2014,34(5):111-115.Yin Jingliang,Liu Lingling.CS-RVM and its application in diagnosis of power transformers[J].Electric Power Automation Equipment,2014,34(5):111-115(in Chinese).
[3]  张东波,徐瑜,王耀南.主动差异学习神经网络集成方法在变压器DGA故障诊断中的应用[J].中国电机工程学报,2010,30(22):64-70.Zhang Dongbo,Xu Yu,Wang Yaonan.Neural network ensemble method and its application in DGA fault diagnosis of power transformer on basis of active diverse learning[J].Proceedings of the CSEE,2010,30(22):64-70(in Chinese).
[4]  付强,陈特放.采用自组织RBF网络算法的变压器故障诊断[J].高电压技术,2012,38(6):1368-1375.Fu Qiang,Chen Tefang.Transformer fault diagnosis using self-adaptive RBF neural network algorithm[J].High Voltage Engineering,2012,38(6):1368-1375(in Chinese).
[5]  邹杰慧.基于新型编码隶属函数的变压器故障模糊诊断法[J].电力系统自动化设备,2010,30(7):88-91.Zou Jiehui.Fuzzy fault diagnosis of power transformer based on new coding membership function[J].Electric Power Automation Equipment,2010,30(7):88-91(in Chinese).
[6]  张凯,黄华平,杨海涛,等.利用改进遗传算法与LS-SVM进行变压器故障诊断[J].电网技术,2010,34(2):164-168.Zhang Kai,Huang Huaping,Yang Haitao,et al.A transformer fault diagnosis method integration improved genetic algorithm with least square support vector machine[J].Power System Technology,2010,34(2):164-168(in Chinese).
[7]  梁永亮,李可军.一种优化特征选择:快速相关向量机变压器故障诊断方法[J].电网技术,2013,37(11):3262-3267.Liang Yongliang,Li Kejun.A transformer diagnosis method based on optimized feature selection methods and fast relevance vector machine [J].Power System Technology,2013,37(11):3262-3267(in Chinese).
[8]  宋斌,于萍,罗运柏,等.基于灰关联熵的充油变压器故障诊断方法[J].电力系统自动化,2005,29(18):76-79.Song Bin,Yu Ping,Luo Yunbai,et al.Fault diagnosis for power transformer based on grey relation entropy[J].Automation of Electric Power Systems,2005,29(18):76-79(in Chinese).
[9]  Dong L,Xiao D,Liang Y,et al.Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers[J].Electric Power Systems Research,2008,78(1):129-136.
[10]  陈小青,刘觉民,黄英伟.采用改进人工鱼群优化粗糙集算法的变压器故障诊断[J].高电压技术,2012,38(6):1403-1409.Chen Xiaoqing,Liu Juemin,Huang Yingwei.Transformer fault diagnosis using improved artificial fish swarm with rough set algorithm[J].High Voltage Engineering,2012,38(6):1403-1409(in Chinese).
[11]  张卫华,苑津莎.应用B样条理论改进的变压器三比值故障诊断方法[J].中国电机工程学报,2014,34(24):4129-4135.Zhang Weihua,Yuan Jingsha.An improved three-ratio for transformer fault diagnosis using B-spline theory[J].Proceedings of the CSEE,2014,34(24):4129-4135(in Chinese).
[12]  杜阳.用“无编码比值法”分析和判断变压器故障性质[J].变压器,1999,36(3):32-36.Du Yang.Analysis and judgment for transformer fault by using “non-code ratio method”[J].Transformer,1999,36(3):32-36(in Chinese).
[13]  邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2005:74-111.
[14]  高文华.多层权重的灰色斜率关联度分析[J].煤田地质与勘探,1995,23(2):32-36.Gao Wenhua.Multiple weight analysis of gray slop correlation coefficients[J].Coal Geology and Exploration,1995,23(2):32-36(in Chinese).
[15]  庞晨,夏继忠.110 kV变压器中乙炔含量异常的分析[J].变电设备与运行,2013,30(4):48-52.Pang Chen,Xia Jizhong.Analysis of abnormal acetylene content in the 110 kV transformer [J].Substation Equipment,2013,30(4):48-52(in Chinese).
[16]  王克峰,孙庆生.一起500 kV变压器稳钉悬浮放电故障的诊断与分析[J].高压电器,2012,48(3):95-98.Wang Kefeng,Sun Qingsheng.Fault diagnosis and analysis of stable-nail discharge in 500 kV transformer [J].High Voltage Apparatus,2012,48(3):95-98(in Chinese).
[17]  马刚.输变电设备在线状态分析与智能诊断系统的研究[D].北京:华北电力大学,2013.
[18]  张利燕,张树亮.220 kV变压器瞬间短路故障原因分析及处理措施[J].河北电力技术,2013,32(1):1-3.Zhang Liyan,Zhang Shuliang.Cause analysis and treatment measures on 220 kV transformer transient short-circuit fault[J].Hebei Electric Power,2013,32(1):1-3(in Chinese).
[19]  尹金良,刘玲玲.代价敏感相关向量机的研究及其在变压器故障诊断中的应用[J].电力自动化设备,2014,34(5):111-115.Yin Jinliang,Liu Lingling.CS-RVM and its application in fault diagnosis of power transformers[J].Electric Power Automation Equipment,2014,34(5):111-115(in Chinese).
[20]  Dong L,Xiao D,Liang Y,et al.Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers[J].Electric Power Systems Research,2008,78(1):129-136.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133