全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电网技术  2015 

基于灰色系统校正-小波神经网络的光伏功率预测

DOI: 10.13335/j.1000-3673.pst.2015.09.010, PP. 2438-2443

Keywords: 小波神经网络,灰色系统模型,相似日,相邻日,平均偏差比

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高非理想天气条件下的光伏功率预测精度,提出基于灰色系统校正-小波神经网络(waveletneuralnetwork,WNN)的预测方法。首先以基于相似日算法的WNN进行逐时功率预测,并进行累加获得日累加功率。根据光伏出力历史数据,确定各广义天气类型的平均偏差比,并以平均偏差比进行平滑处理后的相邻日功率建立离散灰色系统模型(discretegraymodel,DGM),进行日总功率预测并获得及其判断区间。最后以日总功率值判断区间为标准对累加功率值进行校正,得到校正后的各时段的预测值。算例结果验证了所提方法的有效性。

References

[1]  Li Z Y,Zhou Y L,Cheng C,et al.Short term photovoltaic power generation forecasting using RBF neural network[C]//26th Chinese Control and Decision Conference.Changsha,China:IEEE Control Systems Society,2014:2758-2763.
[2]  张艳霞,赵杰.基于反馈型神经网络的光伏系统发电功率预测[J].电力系统保护与控制,2011,39(15):96-109.Zhang Yanxia,Zhao Jie.Application of recurrent neural networks to generated power forecasting for photovoltaic system[J].Power System Protection and Control,2011,39(15):96-109(in Chinese).
[3]  李鹏梅,臧传治,王侃侃.基于相似日和神经网络的光伏发电预测[J].可再生能源,2013,31(10):1-9.Li Pengmei,Zang Chuanzhi,Wang Kankan.Photovoltaic generation prediction based on similar days and neural network[J].Renewable Energy Resources,2013,31(10):1-9(in Chinese).
[4]  丁明,徐宁舟.基于马尔可夫链的光伏发电系统输出功率短期预测方法[J].电网技术,2011,35(1):152-157.Ding Ming,Xu Ningzhou.A method to forecast short-term output power of photovoltaic generation system based on Markov Chain[J].Power System Technology,2011,35(1):152-157(in Chinese).
[5]  Kaplanis S,Kaplani E.A model to predict expected mean and stochastic hourly global solar radiation I(h; n(j)) values[J].Renewable Energy,2007,32(8):1414-1425.
[6]  Lorenz E,Hurka J,Heinemann D,et al.Irradiance forecasting for the power prediction of grid-connected photovoltaic systems[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2009,2(1):2-10.
[7]  Li Y T,Su Y,Shu L J.An ARMAX model for forecasting the power output of a grid connected photovoltaic system[J].Renewable Energy,2014(66):78-89.
[8]  Yazdanbaksh O,Krahn A,Dick S.Predicting solar power output using complex fuzzy logic[C]//Joint IFSA World Congress and NAFIPS Annual Meeting.Edmonton:IFSA World Congress and NAFIPS Annual Meeting,2013:1243-1248.
[9]  中国气象局.GB/T 22164—2008 公共气象服务一天气图形符号[S].北京:中国标准出版社,2008.
[10]  王飞.并网型光伏电站发电功率预测方法与系统[D].北京:华北电力大学,2013.
[11]  姜爱萍.混沌时间序列的小波神经网络预测方法及其优化研究[M].上海:上海大学出版社,2013:23-24.
[12]  虞和济,陈长征,张省,等.基于神经网络的智能诊断[M].北京:冶金工业出版社,2002:170-171.
[13]  丁明,王磊,毕锐.基于改进BP神经网络的光伏发电系统输出功率短期预测模型[J].电力系统保护与控制,2012,40(11):93-99.Ding Ming,Wang Lei,Bi Rui.A short-term prediction model to forecast output power of photovoltaic system based on improved BP neural network[J].Power System Protection and Control,2012,40(11):93-99(in Chinese).
[14]  刘思峰.灰色系统理论及其应用[M].北京:科学出版社,2014:140-168.
[15]  李玻,方玲.函数变换提高灰色预测模型精度的条件[J].后勤工程学院学报,2009,25(4):86-90.Li Bo,Fang Ling.Conditions of function transformation improve the accuracy of grey prediction model[J].Journal of Logistical Engineering University,2009,25(4):86-90(in Chinese).
[16]  王贺,胡志坚,张翌晖,等.基于聚类经验模态分解和最小二乘支持向量机的短期风速预测[J].电工技术学报,2014,29(4):237-245.Wang He,Hu Zhijian,Zhang Yihui,et al.A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines[J].Transactions of China Electrotechnical Society,2014,29(4):237-245(in Chinese).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133