全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多源遥感数据的降水空间降尺度研究——以川渝地区为例

DOI: 10.3724/SP.J.1047.2015.00108, PP. 108-117

Keywords: 空间降尺度,NDVI,川渝地区,TRMM降水,地理因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

大量研究表明,通过传统地面气象站点实测的单点数据,不能有效地反映降水的空间变化特征。目前,以遥感数据获取的降水产品已得到了广泛的应用,但在地形地势复杂区域,遥感降水产品的空间分辨率与数据精度等方面仍然存在着极大的不足。因此,本文以四川重庆(川渝)地区为例,通过建立降水产品降尺度算法,以实现降水产品的降尺度估算,提高降水数据的空间分辨率。依据在不同尺度下(0.25°、0.50°、0.75°和1.00°),TRMM3B43、地理因子,以及MOD13A3(NDVI)之间存在的相关关系,构建了多元回归模型。通过对比这4种尺度下的回归模型,选择其中精度最高的作为最终的降尺度算法,然后再把这种降尺度算法应用到1km分辨率下进行降水估算。进一步,以区域差异分析(GDA)和区域比率分析法(GRA)对降尺度估算的降水数据进行校正,并结合部分地面气象站点实测的降水数据进行验证。验证结果表明降尺度算法是可靠的,能有效提升降水产品的空间分辨率,同时GDA和GRA校正方法能减小误差,进一步提升降水估算的精度,满足区域地表过程应用的需求。

References

[1]  Merlin O, Al Bitar A, Walker J P, et al. An improved algorithm for disaggregating microwave-derived soil moisture based on red, near- infrared and thermal- infrared data[J]. Remote Sensing of Environment, 2010,114(10):2305-2316.
[2]  Malo A R, Nicholson S. A study of rainfall and vegetation dynamics in the African Sahel using normalized difference vegetation index[J]. Journal of Arid Environments, 1990,19(1):1-24.
[3]  Martiny N, Camberlin P, Richard Y, et al. Compared regimes of NDVI and rainfall in semi-arid regions of Africa[J]. International Journal of Remote Sensing, 2006,27(23): 5201-5223.
[4]  Nicholson S E, Davenport M L, Malo A R. A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR[J]. Climatic Change, 1990,17(2-3): 209-241.
[5]  孙艳玲,郭鹏,延晓冬,等.内蒙古植被覆盖变化及其与气候、人类活动的关系[J].自然资源学报,2010,3(25):407- 414.
[6]  Jia S, Zhu W, Lü A, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011,115(12):3069-3079.
[7]  王炳赟,范广洲,董一平,等.川渝地区气候与物候的变化特征分析[J].地理科学,2011,31(6):674-681.
[8]  Su F, Hong Y, Lettenmaier D P. Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin[J]. Journal of Hydrometeorology, 2008,9(4):622-640.
[9]  Immerzeel W W, Rutten M M, Droogers P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009,113(2):362-370.
[10]  Bohnenstengel S I, Schlünzen K, Beyrich F. Representativity of in situ precipitation measurements-A case study for the LITFASS area in North-Eastern Germany[J]. Journal of Hydrology, 2011,400(3):387-395.
[11]  Marzano F S, Cimini D, Montopoli M. Investigating precipitation microphysics using ground- based microwave remote sensors and disdrometer data[J]. Atmospheric Research, 2010,97(4):583-600.
[12]  Duan Z, Bastiaanssen W G M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling- calibration procedure[J]. Remote Sensing of Environment, 2013,131(5):1-13.
[13]  Michaelides S, Levizzani V, Anagnostou E, et al. Precipitation: Measurement, remote sensing, climatology and modeling[J]. Atmospheric Research, 2009,94(4):512-533.
[14]  Huffman G J, Adler R F, Arkin P, et al. The global precipitation climatology project (GPCP) combined precipitation dataset[J]. Bulletin of the American Meteorological Society, 1997,78(1):5-20.
[15]  Huffman G J, Adler R F, Morrissey M M, et al. Global precipitation at one-degree daily resolution from multisatellite observations[J]. Journal of Hydrometeorology, 2001, 2(1):36-50.
[16]  Huffman G J, Adler R F, Bolvin D T, et al. Improving the global precipitation record: GPCP version 2.1[J]. Geophysical Research Letters, 2009,36(17):1-5.
[17]  Kubota T, Shige S, Hashizume H, et al. Global precipitation map using satellite-borne microwave radiometers by the GSMaP Project: Production and validation[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007,45 (7):2259-2275.
[18]  Kummerow C, Barnes W, Kozu T, et al. The tropical rainfall measuring mission (TRMM) sensor package[J]. Journal of Atmospheric and Oceanic Technology, 1998,15(3): 809-817.
[19]  Kummerow C, Simpson J, Thiele O, et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit[J]. Journal of Applied Meteorology, 2000,39(12):1965-1982.
[20]  Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined- sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007,8(1): 38-55.
[21]  Li X H, Zhang Q, Xu C Y. Suitability of the TRMM satellite rainfalls in driving a distributed hydrological model for water balance computations in Xinjiang catchment, Poyang lake basin[J]. Journal of Hydrology, 2012,426(3): 28-38.
[22]  Swenson S, Wahr J. Monitoring the water balance of Lake Victoria, East Africa, from space[J]. Journal of Hydrology, 2009,370(1):163-176.
[23]  Li L, Hong Y, Wang J, et al. Evaluation of the real-time TRMM-based multi-satellite precipitation analysis for an operational flood prediction system in Nzoia Basin, Lake Victoria, Africa[J]. Natural hazards, 2009,50(1):109-123.
[24]  Vrieling A, Sterk G, de Jong S M. Satellite-based estimation of rainfall erosivity for Africa[J]. Journal of Hydrology, 2010,395(3):235-241.
[25]  Islam M N, Uyeda H. Use of TRMM in determining the climatic characteristics of rainfall over Bangladesh[J]. Remote Sensing of Environment, 2007,108(3):264-276.
[26]  Agam N, Kustas W P, Anderson M C, et al. A vegetation index based technique for spatial sharpening of thermal imagery[J]. Remote Sensing of Environment, 2007,107 (4):545-558.
[27]  Merlin O, Duchemin B, Hagolle O, et al. Disaggregation of MODIS surface temperature over an agricultural area using a time series of Formosat- 2 images[J]. Remote Sensing of Environment, 2010,114(11):2500-2512.
[28]  Merlin O, Al Bitar A, Walker J P, et al. A sequential model for disaggregating near- surface soil moisture observations using multi- resolution thermal sensors[J]. Remote Sensing of Environment, 2009,113(10):2275-2284.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133