全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于最大距离的纯像元指数端元提取算法

DOI: 10.3724/SP.J.1047.2015.00086, PP. 86-90

Keywords: 混合像元,纯像元指数,高光谱,端元提取,最大距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

在高光谱混合像元分解中,PPI算法是一种比较成熟的算法,但PPI算法中每次投影向量的生成都是随机的,多次执行PPI算法后端元提取的结果并不稳定。本文以线性光谱混合模型的凸面几何学描述为基础,利用端元在高光谱图像特征空间中所形成的凸面单形体端点的特点,提出了一种区别于PPI算法的最大距离纯像元指数方法。选取特征空间中所有样本点的光谱均值作为超球的球心,计算所有样本点到球心的欧氏距离,以等于或大于这个最大距离的长度作为半径,在特征空间中设计一个包围所有样本点的超球面,并在超球面上均匀地选取参考点,针对每一个参考点,在样本点中找出与它距离最远的一个,记录每个样本点成为距离最大点的次数,将其作为评价该像元是否为端元的纯像元指数,从而使得每次端元提取的精度得到保证。最后,利用美国内华达州Cuprite获取的AVIRIS数据对算法进行了验证。实验结果表明,采用本文算法提取的端元精度优于N-FINDR算法和VCA算法,而且鲁棒性较好,克服了PPI算法由于随机生成投影向量所带来的端元提取不稳定性。

References

[1]  Gillespie A R. Spectral mixture analysis of multispectral thermal infrared images[J]. Remote Sensing of Environment, 1992,42(2):137-145.
[2]  Foody G M, Cox D P. Sub-pixel land cover composition estimation using a linear mixture model and fuzzy membership functions[J]. Remote sensing, 1994,15(3):619-631.
[3]  Boardman J W. Geometric mixture analysis of imaging spectrometry data[C]//Geoscience and Remote Sensing Symposium, 1994. IGARSS'94 Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, 1994, 4: 2369-2371.
[4]  Keshava N, Mustard J F. Spectral unmixing[J]. Signal Processing Magazine, IEEE, 2002,19(1):44-57.
[5]  Atkinson P M, Cutler M E J, Lewis H. Mapping sub-pixel proportional land cover with AVHRR imagery[J]. International Journal of Remote Sensing, 1997,18(4):917-935.
[6]  Bateson A, Curtiss B. A method for manual endmember selection and spectral unmixing[J]. Remote Sensing of Environment, 1996,55(3):229-243.
[7]  Winter M E. N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data[C]//SPIE's International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1999:266-275.
[8]  Winter M E. A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image[C]//Defense and Security. International Society for Optics and Photonics, 2004:31-41.
[9]  Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43 (4):898-910.
[10]  Chang C I, Wu C C, Liu W, et al. A new growing method for simplex- based endmember extraction algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10):2804-2819.
[11]  Plaza A, Chang C I. Impact of initialization on design of endmember extraction algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(11):3397- 3407.
[12]  耿修瑞,童庆禧,郑兰芬.一种基于端元投影向量的高光谱图像地物提取算法[J].自然科学进展,2005,15(4):509- 512.
[13]  AVIRIS. AVIRIS data-ordering free AVIRIS standard data products[DB/OL].http://aviris.jpl.nasa.gov/data/free_data. html, 2013.
[14]  Clark R N, Swayze G A. Evolution in Imaging Spectroscopy Analysis and Sensor Signal-to-Noise: d P. An Examination of How Far We Have Come[C]//Summaries of the sixth annual JPL airborne Earth science workshop. Sixth Annual JPL Airborne Earth ScienceWorkshop, 1996.
[15]  Resmini R G, Kappus M E, Aldrich W S, et al. Mineral mapping with hyperspectral digital imagery collection experiment (HYDICE) sensor data at Cuprite, Nevada, USA[J]. International Journal of Remote Sensing, 1997,18(7): 1553-1570.
[16]  崔耀平,刘彤,赵志平,等.干旱荒漠区植被覆盖变化的遥感监测分析[J].地球信息科学学报, 2011,13(3):305-312.
[17]  Liu X, Zhang B, Gao L R, et al. A maximum noise fraction transform with improved noise estimation for hyperspectral images[J]. Science in China Series F: Information Sciences, 2009,52(9):1578-1587.
[18]  Heinz D C, Chang C I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(3):529-545.
[19]  Ashton E A, Schaum A. Algorithms for the detection of sub-pixel targets in multispectral imagery[J]. Photogrammetric Engineering & Remote Sensing, 1998,64(7):723- 731.
[20]  U.S Geological Survey Library. USGS Digital Spectral Library 06[DB/OL]. http://speclab.cr.usgs.gov/spectral.lib06b, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133