Pok G, Liu J C, Nair A S. Selective removal of impulse noise based on homogeneity level information[J]. IEEE Transactions on Image Processing, 2003,12(1):85-92.
[2]
Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2005:60-65.
[3]
Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007,16(8):2080-2095.
[4]
Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006,15(12):3736-3745.
[5]
Xu J, Osher S. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising[J]. IEEE Transactions on Image Processing, 2007,16(2):534-544.
[6]
Tao M, Yuan X. Recovering low-rank and sparse components of matrices from incomplete and noisy observations[J]. SIAM Journal on Optimization, 2011,21(1):57-81.
[7]
Babacan S D, Luessi M, Molina R, et al. Sparse Bayesian methods for low-rank matrix estimation[J]. IEEE Transactions on Signal Processing, 2012,60(8):3964-3977.
[8]
Jolliffe I. Principal Component Analysis[M]. New York: Springer-Verlag, 1986.
[9]
Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for l1 minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008,1(1):143-168.
[10]
You Y L, Kaveh M. Fourth-order partial differential equations for noise removal[J]. IEEE Transactions on Image Processing, 2000,9(10):1723-1729.
[11]
Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physisca D, 1992,60:259-268.
[12]
Nikolova M. A variational approach to remove outliers and impulse noise[J]. Journal of Mathematical Imaging and Vision, 2004,20(1-2):99-120.
[13]
Chan R, Dong Y, Hintermuller M. An efficient two-phase L1-TV method for restoring blurred images with impulse noise[J]. IEEE Transactions on Image Processing, 2010,19(7):1731-1739.
[14]
Cai J F, Chan R, Nikolova M. Fast two-phase image deblurring under impulse noise[J]. Journal of Mathematical Imaging and Vision, 2010,36(1):46-53.
[15]
Chan R, Hu C, Nikolova M. An iterative procedure for removing random-valued impulse noise[J]. IEEE Signal Processing Letters, 2004,11(12):921-924.
[16]
Garnett R, Huegerich T, Chui C, et al. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing, 2005,14(11):1747-1754.
[17]
Li B, Liu Q, Xu J, et al. A new method for removing mixed noises[J]. Science China Information Sciences, 2011,54(1):51-59.
[18]
Cai J F, Chan R, Nikolova M. Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise[J]. Inverse Problems and Imaging, 2008,2(2):187-204.
[19]
Xiao Y, Zeng T, Yu J, et al. Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization[J]. Pattern Recognition, 2011,44(8):1708-1720.
[20]
Xiong B, Yin Z. A universal denoising framework with a new impulse detector and nonlocal means[J]. IEEE Transactions on Image Processing, 2012,21(4):1663-1675.
[21]
Delon J, Desolneux A. A patch-based approach for removing impulse or mixed Gaussian-impulse noise[J]. SIAM Journal on Imaging Sciences, 2013,6(2):1140-1174.
[22]
Candes E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009,9(6):717-772.
[23]
Cai J F, Candes E J, Shen Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010,20(4):1956-1982.
[24]
Candes E J, Li X, Ma Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2011,58(3):1-37.
[25]
Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[C]. Proceedings of Advances in Neural Information Processing Systems, 2009:2080-2088.
[26]
Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pursuit[J]. IEEE Transactions on Information Theory, 2012,58(5):3047-3064.
[27]
Chen Y, Jalali A, Sanghavi S, et al. Low-rank matrix recovery from errors and erasures[J]. IEEE Transactions on Information Theory, 2013,59(7):4324-4337.
[28]
Liu Z, Vandenberghe L. Interior-point method for nuclear norm approximation with application to system identification[J]. SIAM Journal on Matrix Analysis and Applications, 2009,31(3):1235-1256.
[29]
Ji H, Liu C, Shen Z, et al. Robust video denoising using low rank matrix completion[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2010:1791-1798.