全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种以低秩矩阵重建的图像混合噪声去除算法

DOI: 10.3724/SP.J.1047.2015.00344, PP. 344-352

Keywords: 混合噪声去除,稳健主成分分析,低秩矩阵重建,增广拉格朗日乘数法,矩阵填充

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,低秩矩阵重建在机器学习、图像处理、计算机视觉与生物信息学等众多科学与工程应用领域中,迅速发展为一个新的研究热点,其主要涉及矩阵填充与稳健主成分分析2大问题,即分别从精确且不完全的采样矩阵元与从大误差矩阵元的分布较为稀疏的观测矩阵中恢复出原始低秩矩阵。鉴此,本文定义了稳健矩阵填充,即从非完全且存在稀疏误差的采样矩阵元中精确恢复出原始低秩矩阵,通过最小化核范数与[l1]-范数的组合构建了相应的凸优化模型,并提出了一种新颖的增广分部拉格朗日乘数法来求解此类最优化问题。通过将其应用于混合高斯与椒盐噪声去除的问题中表明,此算法对具有规则纹理及相似结构内容等低秩特征的影像中混合噪声的去除效果较好,其能同时去除影像中的椒盐噪声与高斯噪声,且有效保留影像中的纹理细节等信息;当影像中椒盐噪声密度较高而高斯噪声相对较小时,其去噪性能更佳。

References

[1]  Pok G, Liu J C, Nair A S. Selective removal of impulse noise based on homogeneity level information[J]. IEEE Transactions on Image Processing, 2003,12(1):85-92.
[2]  Buades A, Coll B, Morel J M. A non-local algorithm for image denoising[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2005:60-65.
[3]  Dabov K, Foi A, Katkovnik V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007,16(8):2080-2095.
[4]  Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE Transactions on Image Processing, 2006,15(12):3736-3745.
[5]  Xu J, Osher S. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising[J]. IEEE Transactions on Image Processing, 2007,16(2):534-544.
[6]  Tao M, Yuan X. Recovering low-rank and sparse components of matrices from incomplete and noisy observations[J]. SIAM Journal on Optimization, 2011,21(1):57-81.
[7]  Babacan S D, Luessi M, Molina R, et al. Sparse Bayesian methods for low-rank matrix estimation[J]. IEEE Transactions on Signal Processing, 2012,60(8):3964-3977.
[8]  Jolliffe I. Principal Component Analysis[M]. New York: Springer-Verlag, 1986.
[9]  Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for l1 minimization with applications to compressed sensing[J]. SIAM Journal on Imaging Sciences, 2008,1(1):143-168.
[10]  You Y L, Kaveh M. Fourth-order partial differential equations for noise removal[J]. IEEE Transactions on Image Processing, 2000,9(10):1723-1729.
[11]  Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physisca D, 1992,60:259-268.
[12]  Nikolova M. A variational approach to remove outliers and impulse noise[J]. Journal of Mathematical Imaging and Vision, 2004,20(1-2):99-120.
[13]  Chan R, Dong Y, Hintermuller M. An efficient two-phase L1-TV method for restoring blurred images with impulse noise[J]. IEEE Transactions on Image Processing, 2010,19(7):1731-1739.
[14]  Cai J F, Chan R, Nikolova M. Fast two-phase image deblurring under impulse noise[J]. Journal of Mathematical Imaging and Vision, 2010,36(1):46-53.
[15]  Chan R, Hu C, Nikolova M. An iterative procedure for removing random-valued impulse noise[J]. IEEE Signal Processing Letters, 2004,11(12):921-924.
[16]  Garnett R, Huegerich T, Chui C, et al. A universal noise removal algorithm with an impulse detector[J]. IEEE Transactions on Image Processing, 2005,14(11):1747-1754.
[17]  Li B, Liu Q, Xu J, et al. A new method for removing mixed noises[J]. Science China Information Sciences, 2011,54(1):51-59.
[18]  Cai J F, Chan R, Nikolova M. Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise[J]. Inverse Problems and Imaging, 2008,2(2):187-204.
[19]  Xiao Y, Zeng T, Yu J, et al. Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization[J]. Pattern Recognition, 2011,44(8):1708-1720.
[20]  Xiong B, Yin Z. A universal denoising framework with a new impulse detector and nonlocal means[J]. IEEE Transactions on Image Processing, 2012,21(4):1663-1675.
[21]  Delon J, Desolneux A. A patch-based approach for removing impulse or mixed Gaussian-impulse noise[J]. SIAM Journal on Imaging Sciences, 2013,6(2):1140-1174.
[22]  Candes E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009,9(6):717-772.
[23]  Cai J F, Candes E J, Shen Z. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010,20(4):1956-1982.
[24]  Candes E J, Li X, Ma Y, et al. Robust principal component analysis[J]. Journal of the ACM, 2011,58(3):1-37.
[25]  Wright J, Ganesh A, Rao S, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization[C]. Proceedings of Advances in Neural Information Processing Systems, 2009:2080-2088.
[26]  Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pursuit[J]. IEEE Transactions on Information Theory, 2012,58(5):3047-3064.
[27]  Chen Y, Jalali A, Sanghavi S, et al. Low-rank matrix recovery from errors and erasures[J]. IEEE Transactions on Information Theory, 2013,59(7):4324-4337.
[28]  Liu Z, Vandenberghe L. Interior-point method for nuclear norm approximation with application to system identification[J]. SIAM Journal on Matrix Analysis and Applications, 2009,31(3):1235-1256.
[29]  Ji H, Liu C, Shen Z, et al. Robust video denoising using low rank matrix completion[C]. IEEE International Conference on Computer Vision and Pattern Recognition, 2010:1791-1798.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133