全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Landsat-8影像的LDA模型变化检测

DOI: 10.3724/SP.J.1047.2015.00353, PP. 353-360

Keywords: 变化检测,面向对象,词袋模型,LDA模型,Landsat-8

Full-Text   Cite this paper   Add to My Lib

Abstract:

变化检测一直是遥感研究领域的热点,随着遥感技术的不断发展,新型数据源不断涌现,使传统遥感变化检测方法面临新的挑战。本文以Landsat-8影像为主要数据源,使用影像分割算法,设计2期遥感影像的文档-单词映射,将影像中所有的像元作为视觉单词,利用LDA模型将影像文档从单词空间转换到主题空间进行表达。在此基础上,结合实地调查对变化区域进行检测和验证,形成一套面向对象的LDA模型变化检测方法。研究表明基于图斑的分析可有效消除以像元尺度进行变化检测产生的椒盐现象;利用LDA模型构建的变化检测方法能较好地实现影像文档特征的统一表达,有效去除2期影像相同地物因光谱差异导致的变化误检验;与差值法和波谱角等常规遥感变化检测方法相比,该方法能有效地减少错漏判,提高遥感影像变化检测的正确率,为中高分辨率遥感影像的变化检测提供新思路。

References

[1]  陈军,陈晋,廖安平,等.全球30 m地表覆盖遥感制图的总体技术[J].测绘学报,2014,43(6):551-557.
[2]  初庆伟,张洪群,吴业炜,等.Landsat-8卫星数据应用探讨[J].遥感信息,2013,28(4):110-114.
[3]  范泽孟,张轩,李婧,等.国家级自然保护区土地覆盖类型转换趋势[J].ACTA GEOGRAPHICA SINICA, 2012,67(12):1623-1633.
[4]  Coppin P R, Bauer M E. Digital change detection in forest ecosystems with remote sensing imagery [J]. Remote sensing reviews, 1996,13(3-4):207-234.
[5]  Howarth P J, Wickware G M. Procedures for change detection using Landsat digital data[J]. International Journal of Remote Sensing, 1981,2(3):277-291.
[6]  Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images: From pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013,80:91-106.
[7]  Tomowski D, Ehlers M, Klonus S. Colour and texture based change detection for urban disaster analysis[C]. Urban Remote Sensing Event (JURSE), 2011 Joint, IEEE, 2011:329-332.
[8]  Ghosh A, Mishra N S, Ghosh S. Fuzzy clustering algorithms for unsupervised change detection in remote sensing images[J]. Information Sciences, 2011,181(4):699-715.
[9]  Huang C, Song K, Kim S, et al. Use of a dark object concept and support vector machines to automate forest cover change analysis[J]. Remote Sensing of Environment, 2008,112(3):970-985.
[10]  Pijanowski B C, Brown D G, Shellito B A, et al. Using neural networks and GIS to forecast land use changes: A land transformation model[J]. Computers, environment and urban systems, 2002,26(6):553-575.
[11]  Lefebvre A, Corpetti T, Hubert-Moy L. Object-oriented approach and texture analysis for change detection in very high resolution images[C]. Geoscience and Remote Sensing Symposium, IGARSS 2008, IEEE International, 2008,4:663-666.
[12]  龙玄耀,李培军.基于图像分割的城市变化检测[J].地球信息科学,2008,10(1):121-127.
[13]  王丽云,李艳,汪禹芹.基于对象变化矢量分析的土地利用变化检测方法研究[J].地球信息科学学报,2014,16(2):307-313.
[14]  Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. The Journal of machine learning research, 2003,3:993-1022.
[15]  Li F F, Perona P. A bayesian hierarchical model for learning natural scene categories[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, 2005,2:524-531.
[16]  Lienou M, Maitre H, Datcu M. Semantic annotation of satellite images using latent dirichlet allocation[J]. Geoscience and Remote Sensing Letters, IEEE, 2010,7(1):28-32.
[17]  周晖,郭军,朱长仁,等.引入PLSA模型的光学遥感图像舰船检测[J].遥感学报,2010,14(4):663-680.
[18]  Putthividhya D, Attias H T, Nagarajan S S. Supervised topic model for automatic image annotation[C]. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), 2010. IEEE.
[19]  Li S, Hong T, Yunhao C, et al. A semisupervised latent dirichlet allocation model for object-based Classification of VHR panchromatic satellite images[J]. Geoscience and Remote Sensing Letters, IEEE, 2014,11(4):863-867.
[20]  Cula O G, Dana K J. Compact representation of bidirectional texture functions[C]. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, 2001,1:1041-1047.
[21]  易文斌,慎利,齐银凤,等.基于概率潜语义分析模型的高光谱影像层次聚类分析[J].光谱学与光谱分析,2011,31(9):2471-2474.
[22]  Phan X H, Nguyen C T. GibbsLDA++: A C/C++ implementation of latent dirichlet allocation (LDA) using Gibbs sampling for parameter estimation and inference[R]. Sendai: Graduate School of Information Science, Tohoku University, 2007.
[23]  Benz U C, Hofmann P, Willhauck G, et al. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information[J]. ISPRS Journal of photogrammetry and remote sensing, 2004,58(3):239-258.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133