全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

土壤有机质含量估测及其影响因素的光谱分析

DOI: 10.3724/SP.J.1047.2012.00258, PP. 258-264

Keywords: 土壤颗粒粒径,反射光谱,有机质含量,光谱预处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

土壤颗粒大小差异使土壤反射光谱产生相应变化,影响土壤有机质含量等属性的光谱预测精度。本研究准备了颗粒粒径分别为2、0.25和0.15mm的土样,测定土壤有机质(SoilOrganicMatter,SOM)含量,并于室内模拟条件下测定其反射光谱。通过分析不同粒径土样的原始(Raw)、多次散射校正(Multiplescatteringcorrection,Msc)、一阶微分(Firstderivative,Fd)、连续统去除(Continuumremoval,Cr)光谱与SOM含量之间的关系,筛选出与SOM含量相关性最强的Fd光谱单波段(2250nm,r=0.82,P<0.01),并建立线性回归模型;利用全波段光谱反射率,以偏最小二乘回归(Partialleastsquareregression,PLSR)方法,确立2mm土样Msc处理光谱的PLSR模型为最优模型(RPD=3.56、R2=0.90、RMSEP=1.96g/kg)。土壤颗粒粒径对土壤光谱反射率变化有明显影响,但二者之间并非简单的线性关系,可能存在一个转折点;单变量(单波段光谱反射率)线性回归模型的预测能力,明显低于全波段反射光谱(Msc处理)-PLSR模型;土样样本容量对SOM含量预测精度有显著影响。因此,根据样本容量大小,选择合适的土壤颗粒粒径与光谱预处理方法组合可以提高预测精度。

References

[1]  Martin M Z, Labbe N, Andre N, et al. Novel multivariate analysis for soil carbon measurements using laser-induced breakdown spectroscopy[J]. Soil Science Scociety American Journal, 2010, 74(1), 87-93.
[2]  Savvides A, Corstanje R, Baxter S J, et al. The relationship between diffuse spectral reflectance of the soil and its cation exchange capacity is scale-dependent[J]. Geoderma, 2010, 154, 353-358.
[3]  鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
[4]  Shi X Z, Yang R W, Weindorf D C, et al. Simulation of organic carbon dynamics at regional scale for paddy soils in China[J]. Climatic Change, (doi:10.1007/s10584-009-9704-1)2009.
[5]  任红艳, 庄大方, 邱冬生,等. 矿区农田土壤砷污染的可见-近红外反射光谱分析研究[J]. 光谱学与光谱分析, 2009, 29 (1): 114-118.
[6]  Ben-dor E, Banin A. Near- infrared analysis as a rapid method to simultaneously evaluate several soil properties[J]. Soil Science Society of America Journal, 1995, 59: 364-372.
[7]  王润生. 高光谱遥感的物质组分和物质成分反演的应用分析[J]. 地球信息科学学报, 2009, 11 (3):261-267.
[8]  Wu Y Z, Chen J, Ji J F, et al. A mechanism study of reflectance spectroscopy for investigating heavy metals in soils[J]. Soil Science Society American Journal, 2007, 71: 918-926.
[9]  Irons J R, Campbell G S, Noman J M, et al. Predicition and measurement of soil bidirection reflectance[J]. IEEE Transcactions on Geoscience and Remote Sensing, 1992, 30: 249-260.
[10]  Jacquemoud S, Baret F, Hanocq J F. Modelling spectral and bidirectional soil reflectance[J]. Remote Sensing of Environment, 1992, 41: 123-132.
[11]  Cierneiewski J, Karnieli A. Virtural surfaces simulating the bidirectional reflectance of semiarid soils[J]. International Journal of Remote Sensing, 2003, 24(7), 1469-1486.
[12]  B?nninger D, Flühler H. Modelling light scattering at soil surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7), 1462-1471.
[13]  Ca asveras J C, Barrón V, Campillo M C, et al. Estimation of aggregate stability indices in Mediterranean soils by diffuse reflectance spectroscopy[J]. Geoderma. doi:10.1016/j.geoderma,2009.
[14]  Nduwamungu C, Ziadi N, Tremblay G,et al. Near-infrared reflectance spectroscopy prediction of soil properties: effects of sample cups and preparation[J]. Soil Science Society American Journal, 2009, 73(6):1896-1903.
[15]  徐永明, 蔺启忠, 黄秀华,等. 利用可见光/近红外反射光谱估算土壤总氮含量的试验研究[J]. 地理与地理信息科学, 2005, 21(1), 19-22.
[16]  何挺, 王静,林宗坚,等. 土壤有机质光谱特征研究[J]. 武汉大学学报-信息科学版, 2006, 31(11),975-979.
[17]  扶卿华, 倪绍祥, 王世新,等. 土壤盐分含量的遥感反演研究[J]. 农业工程学报, 2007, 23(1), 48-54.
[18]  刘焕军, 张柏, 赵军等. 黑土有机质含量高光谱模型研究[J]. 土壤学报, 2007, 44(1), 27-33.
[19]  Summers D, Lewis M, Ostendorf B, et al. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties[J]. Ecological Indicators, doi: 10.1016/j.ecolind,2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133