全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

特征约束的四面体生成方法与案例分析

DOI: 10.3724/SP.J.1047.2012.00555, PP. 555-561

Keywords: 特征约束,四面体剖分,地学分析,Delaunay算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

在虚拟地理环境(VGE)建模过程中,由于地学领域分析对象普遍具有边界复杂、空间特征约束较多(包括点、线、面、内洞)等特点,并且地学分析和计算对网格质量要求较高,故而难以构建能够准确顾及地学对象复杂的特征约束且满足地学分析的高质量三维网格。针对这一问题,本文提出了一种约束型Delaunay四面体网格离散算法,即首先将复杂地学对象及其各种特征约束表示为分段连续线性组合物(PiecewiseLinearComplexes,PLC)中的一系列约束点、约束线段和约束面,然后利用PLC中的点集进行Delaunay四面体初始剖分,在网格离散过程中通过添加额外的节点,逐一恢复丢失的约束线段和约束面,利用限定网格单元最大半径边长比(或体积)来控制网格质量。利用该算法可以产生既满足各种特征约束条件又具有高质量的四面体网格。

References

[1]  闾国年. 地理分析导向的虚拟地理环境:框架、结构与功能[J].中国科学,2011,41(4):549-561.
[2]  韦玉春,陈锁忠,等. 地理建模原理与方法[M].北京:科学出版社,2005,306-311.
[3]  李爽,姚静. 虚拟地理环境的多维数据模型与地理过程表达[J].地理与地理信息科学,2005,21(4):1-5.
[4]  王彦兵,吴立新,史文中. GTP模型中四面体的引入及其空间模型扩展[J].地理与地理信息科学,2003,19 (5):16-19.
[5]  Rajan V T. Optimality of the Delaunay triangulation in R4[J]. Discrete & Computational Geometry, 1994,12:189-202.
[6]  赵建军,王启付. 边界一致的Delaunay四面体网格稳定生成算法[J].机械工程学报,2004,40(6):100-105.
[7]  Preparata E P, Shamos M I. Computational geometry: An introduction . New York/Berlin: Springer-Verlag, 1985.
[8]  Si H. On refinement of constrained Delaunay tetrahedralizations . In: Proc. of the 15th International Meshing Roundtable, 2006,509-528.
[9]  Shewchuk J R. Tetrahedral mesh generation by Delaunay refinement . In: Proceedings of the 14th ACM Symposium on Computational Geometry. New York: ACM, 1998,86-95.
[10]  Edelsbrunner H. Geometry and topology for mesh generation[M]. Cambridge: Cambridge University Press, 2001.
[11]  Si H. Three dimensional boundary conforming Delaunay mesh generation . Institute of Mathematics, Technische Universit?t Berlin, 2008.
[12]  Si H, G?rtner K. Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations . Proceedings of 14th International Meshing Roundtable, Sandia National Laboratories, San Diego, CA, USA 2005, 147-163.
[13]  Cheng S W, Dey T K, Ramos E A, Ray T. Quality meshing for polyhedra with small angles[J]. International Journal on Computational Geometry and Applications, 2005,15:421-461.
[14]  Si H. Constrained Delaunay tetrahedral mesh generation and refinement[J]. Finite Elem. Anal. Des. 2010, 46(1-2),33-46.
[15]  Lewis R W, Yao Z, Gethin D T. Three dimensional unstructured mesh generation[J]: Part 3. Volume meshes. Comput. Methods Appl. Mech. Engrg., 1996,134:285-310.
[16]  宋超,关振群,顾元宪.三维约束Delaunay 三角化的边界恢复和薄元消除方法[J].计算力学学报,2004,21(2):169-176.
[17]  Joe B. Construction of three-dimensional improved-quality triangulation using local transforms[J]. SLAM J. of Sci. Compt, 1995,6:1292-1307.
[18]  Scott C, Joseph T, Matthew S. An approach to combined Laplacian and optimization-based smoothing for triangular, quadrilateral, and quad-dominant meshes . In: Proceedings of 7th International Meshing Roundtable, Michigan, 1998,421-436.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133