全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Voronoi邻近的物流车辆路径快速优化算法

DOI: 10.3724/SP.J.1047.2012.00781, PP. 781-787

Keywords: Voronoi,模拟退火,空间聚类,物流,车辆路径问题

Full-Text   Cite this paper   Add to My Lib

Abstract:

现代物流业需要快速高效并智能化制定物流运输方案。传统路径优化方法适合处理中小规模的车辆路径问题,计算时间较长,方案质量较低,故需发展短时间内能提供高质量路径方案的启发式算法。针对大规模物流车辆路径优化,本文提出了一种Voronoi邻近的快速优化方法。该方法先创建初始解,而后进行迭代优化。初始解创建利用Voronoi邻近关系,顾及车辆容量约束,自底向上进行客户点空间聚类,将问题降维;采用最廉价插入算法安排聚类内部路径,生成性质良好的初始解。迭代优化在客户点Voronoi邻近内进行有效的局部搜索,利用模拟退火机制接受较差解,从而跳出局部最优,不断提高解的质量。本文利用模拟生成的北京市大规模车辆路径问题进行实验,结果表明本文算法能够在4500s内优化客户点高达12000个物流车辆路径问题,计算时间较短,解的质量优良,算法性能稳定。本文与其他算法比较,能在较短时间内提供高质量车辆路径方案,适用于大规模物流车辆路径的优化。

References

[1]  高自友,孙会君. 现代物流与交通运输系统[M]. 北京:人民交通出版社, 2003.
[2]  Santos L, Coutinho-Rodrigues J, Antunes C H. A web spatial decision support system for vehicle routing using Google Maps[J]. Decision Support Systems, 2011. 51(1): 1-9.
[3]  肖桂荣,聂乔,吴升. 面向物流的空间信息Web服务集成研究[J]. 地球信息科学学报, 2011, 13(2): 630-636.
[4]  戚铭尧. 面向物流的空间信息服务及其关键技术研究 [D]. 北京:中国科学院遥感应用研究所,2006.
[5]  Laporte G. Fifty years of vehicle routing[J]. Transportation Science, 2009, 43(4): 408-416.
[6]  李清泉,张金亭,黄经南. 一个物流配送优化算法[J]. 武汉大学学报·信息科学版, 2003, 28(1): 9-13.
[7]  Kyt?joki J, Nuortio T, Br?ysy O, et al. An efficient variable neighborhood search heuristic for very large scale vehicle routing problems [J]. Computers & Operations Research, 2007, 34(9): 2743-2757.
[8]  Okabe A, Boots B, Sugihara K, et al. Spatial tessellations: Concepts and applications of Voronoi Diagrams[M]. Wiley. 2000.
[9]  Chen J, Li C, Li Z, et al. A Voronoi-based 9-intersection model for spatial relations [J]. International Journal of Geographical Information Science, 2001, 15(3): 201-220.
[10]  Fang Z X, Tu W, Li Q Q, et al. A Voronoi neighborhood-based search heuristic for distance/capacity constrained very large vehicle routing problems [J]. International Journal of Geographical Information Science, 2012, DOI: 10.1080/13658816.2012.707319.
[11]  梅新,崔伟宏,高飞,等. 基于空间聚类的物流配送决策研究[J]. 武汉大学学报·信息科学版, 2008, 33(4): 371-375.
[12]  Barreto S, Ferreira C, Paix o J, Santos B S. Using clustering analysis in a capacitated location-routing problem [J]. European Journal of Operational Research, 2007, 179(3): 968-977.
[13]  Han J W, Kamber M and Pei J. Data mining: Concepts and techniques [M]. The Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann Publishers, 2011(3rd edition).
[14]  Toth P and Daniele V. The vehicle routing problem[M]. Society for Industrial and Applied Mathematics, 2002.
[15]  Kirkpatrick S, Gelatt Jr, C D, Vecchi M P. Optimization by simulated annealing [J]. Science,1983, 220(4598): 671-680.
[16]  张波,叶家玮,胡郁葱.模拟退火算法在路径优化问题中的应用[J]. 中国公路学报, 2004. 17(1): 83-85.
[17]  Zachariadis E E and Kiranoudis C T. A strategy for reducing the computational complexity of local search-based methods for the vehicle routing problem [J]. Computers & Operations Research,2010,37(12): 2089-2105.
[18]  TransCAD. http://www.caliper.com/tcovu.htm
[19]  Gro?r C, Golden B, Wasil E. A library of local search heuristics for the vehicle routing problem [J]. Mathematical Programming Computation, 2010,2(2): 79-101.
[20]  Li F, Golden B, Wasil E. Very large-scale vehicle routing: New test problems, algorithms, and results [J]. Computers & Operations Research, 2005,32(5): 1165-1179.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133