Liu W G, Wu E Y, Gopal S, et al.. ARTMMAP: A neuralnetwork approach to subpixel classification[J]. IEEE Transactionson Geoscience and Remote Sensing, 2004, 42(9):1976-1983.
[4]
Chang C I, Chiang S S, Smith J A. Linear spectral randommixture analysis for hyperspectral imagery[J]. IEEE Transactionson Geosciences and Remote Sensing, 2002,40(2):375-392.
[5]
Huang C, Townshend J. A stepwise regression tree for nonlinearapproximation: Applications to estimating subpixelland cover[J]. International Journal of Remote Sensing,2003,24 (1):75-90.
Vapnik V. The nature of statistical learning theory [M].New York: Springer Verlag, 1995.
[8]
Foody G M, Mathur A. A relative evaluation of multiclassimage classification by support vector machines[J]. IEEETransactions on Geoscience and Remote Sensing, 2004, 42(6): 1335-1343.
Weston J, Watkins C. Support vector machines formulti-class pattern recognition[C]. // Proc. of Seventh EuropeanSymposium on Artificial Neural Networks. Bruges:D-Facto Press,1999,219-224.
[12]
Li Z Y, Tang S W. Face recognition using improved pairwisecoupling support vector machines[C]. // Proc. of theNinth International Conference on Neural InformationProcessing. Cambridge: MIT Press, 2002,876-880.
[13]
Melgani F, Bruzzone L. Classification of hyperspectral remotesensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1778-1790.
[14]
Foody G M. Relating the land cover composition ofmixed pixels of artificial neural network classificationoutput[J]. Photogrammtry Engineering and Remote Sensing,1996, 62(5):491-499.
[15]
Eric D. On the use of prior and posterior information inthe subpixel proportion problem[J]. IEEE Transactions onGeoscience and Remote Sensing, 2003,41(11):2687-2691.
[16]
Valls G C, Chova L G, Maravilla J C, et al. Robust supportvector method for hyperspectral data classificationand knowledge discovery[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2004,42 (7):1530-1542.
[17]
Tao Q, Wu G, Wang F, et al.. Posterior probability supportvector machines for unbalanced data[J]. IEEE Transon Neural Networks, 2005,16(6):1561-1573.
[18]
李晶皎译.模式识别(第3 版)[M].北京:电子工业出版社,2006.
[19]
Fumitake Takahashi, Shigeo Abe. Decision-tree-basedmulti-class support vector machines[C]. Proceedings ofthe 9th International Conference on Neural Information,Singapore, 2002:1418-1422.
[20]
Wu T F, Lin C J, Weng R C. Probability est imates formulti-class classification by pairwise coupling [J]. Journalof Machine Learning Research, 2004,5(2):975-1005.
Platt J C. Probabilistic outputs for support vector machinesand comparisons to regularized likelihood methods[M]. In: Advances in Large Margin Classifies. Cambridge,MA:MIT Press.1999:70-83.