全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

遥感影像混合像元的分解——基于加权后验概率的支持向量机分类算法

DOI: 10.3724/SP.J.1047.2013.00249, PP. 249-254

Keywords: 加权后验概率,支持向量机(SVM),遥感影像,分类,混合像元分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

混合像元是遥感影像中普遍存在的现象,对此,本文提出基于加权后验概率的支持向量机进行影像混合像元分解。该分类算法可判定端元种类的同时得到每种地物的后验概率,从而进行非线性模型的混合像元分解。由于加权后验概率的支持向量机分类算法能够减少分类器受土地覆盖类型模糊样本点的干扰,因此,改善了非线性混合像元分解模型的精度。首先,由样本点计算得到核函数参数值,然后,计算影像中每一种土地覆盖类型的后验概率,将其作为各个两类支持向量机分类器的权系数并求得多类后验概率值,确定影像每一种土地覆盖类型并得到丰度值。本文采用TM多波段遥感影像验证该方法的可行性,实验区位于我国东北部的大兴安岭中北段地区,土地覆盖类型包含农田、居民地、水体、荒地等。将本文提出的混合像元分解方法结果与标准支持向量机模型分解的结果对比表明,以加权后验概率的支持向量机遥感影像混合像元分解方法精度优于标准支持向量机模型。

References

[1]  陈述彭,童庆禧,郭华东.遥感信息机理研究[M].北京:科学出版社,1998, 364-385.
[2]  张彦,邵美珍.基于径向基函数神经网络的混合像元分解[J].遥感学报,2002,4(4):285-289.
[3]  Liu W G, Wu E Y, Gopal S, et al.. ARTMMAP: A neuralnetwork approach to subpixel classification[J]. IEEE Transactionson Geoscience and Remote Sensing, 2004, 42(9):1976-1983.
[4]  Chang C I, Chiang S S, Smith J A. Linear spectral randommixture analysis for hyperspectral imagery[J]. IEEE Transactionson Geosciences and Remote Sensing, 2002,40(2):375-392.
[5]  Huang C, Townshend J. A stepwise regression tree for nonlinearapproximation: Applications to estimating subpixelland cover[J]. International Journal of Remote Sensing,2003,24 (1):75-90.
[6]  唐世浩,朱启疆,闫广建,等.遗传算法及其在遥感线性、非线性模型反演中的应用效果分析[J].北京师范大学学报(自然科学版),2002,38(2):266-272.
[7]  Vapnik V. The nature of statistical learning theory [M].New York: Springer Verlag, 1995.
[8]  Foody G M, Mathur A. A relative evaluation of multiclassimage classification by support vector machines[J]. IEEETransactions on Geoscience and Remote Sensing, 2004, 42(6): 1335-1343.
[9]  骆剑承,周成虎,梁怡.支持向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55.
[10]  张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-56.
[11]  Weston J, Watkins C. Support vector machines formulti-class pattern recognition[C]. // Proc. of Seventh EuropeanSymposium on Artificial Neural Networks. Bruges:D-Facto Press,1999,219-224.
[12]  Li Z Y, Tang S W. Face recognition using improved pairwisecoupling support vector machines[C]. // Proc. of theNinth International Conference on Neural InformationProcessing. Cambridge: MIT Press, 2002,876-880.
[13]  Melgani F, Bruzzone L. Classification of hyperspectral remotesensing images with support vector machines[J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1778-1790.
[14]  Foody G M. Relating the land cover composition ofmixed pixels of artificial neural network classificationoutput[J]. Photogrammtry Engineering and Remote Sensing,1996, 62(5):491-499.
[15]  Eric D. On the use of prior and posterior information inthe subpixel proportion problem[J]. IEEE Transactions onGeoscience and Remote Sensing, 2003,41(11):2687-2691.
[16]  Valls G C, Chova L G, Maravilla J C, et al. Robust supportvector method for hyperspectral data classificationand knowledge discovery[J]. IEEE Transactions on Geoscienceand Remote Sensing, 2004,42 (7):1530-1542.
[17]  Tao Q, Wu G, Wang F, et al.. Posterior probability supportvector machines for unbalanced data[J]. IEEE Transon Neural Networks, 2005,16(6):1561-1573.
[18]  李晶皎译.模式识别(第3 版)[M].北京:电子工业出版社,2006.
[19]  Fumitake Takahashi, Shigeo Abe. Decision-tree-basedmulti-class support vector machines[C]. Proceedings ofthe 9th International Conference on Neural Information,Singapore, 2002:1418-1422.
[20]  Wu T F, Lin C J, Weng R C. Probability est imates formulti-class classification by pairwise coupling [J]. Journalof Machine Learning Research, 2004,5(2):975-1005.
[21]  李慧,王云鹏,李岩,等.基于SVM和PWC的遥感影像混合像元分解[J].测绘学报,2009,38(4):318-323.
[22]  张翔,肖小玲.支持向量机方法中加权后验概率建模方法[J].清华大学学报:信息科学版,2007,47(10):34-40.
[23]  许菡,李小娟. Normalized Cut 与分水岭变换在高光谱影像混合像元端元提取中的应用[J].中国图象图形学报,2012,17(7):880-885.
[24]  Platt J C. Probabilistic outputs for support vector machinesand comparisons to regularized likelihood methods[M]. In: Advances in Large Margin Classifies. Cambridge,MA:MIT Press.1999:70-83.
[25]  吴波,张良培,李平湘.基于支撑向量机概率输出的高光谱影像混合像元分解[J].武汉大学学报:信息科学版,2006,31(1):52-54.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133