全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

海陆气候事件关联规则挖掘方法

DOI: 10.3724/SP.J.1047.2014.00182, PP. 182-190

Keywords: 气候指数,异常气候事件,气候分区,时序关联规则挖掘

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,异常气候事件的频发对人类的生活环境和经济发展带来严重负影响。气象学家研究表明海洋气候异常对陆地气候异常事件的发生具有重要的诱发作用,因此,对海陆气候间的内在关联机制进行深入挖掘具有重要研究价值。本文提出了一种关联规则挖掘方法,以探索单一海洋气候指数与陆地异常气候事件间存在的关联。首先,针对陆地气候要素,采用顾及空间邻近关系的层次聚类方法进行有效气候分区,通过对各层分区结果进行相关统计分析得到有效的各区域气候序列;然后,进行顾及多重约束进行时序关联规则挖掘,以探索海陆气候要素间的关联机制;最后,通过实际算例分析得到的各气候指数与我国陆地区域异常降水事件间的关联机制结果,与实际情况高度吻合。

References

[1]  姜世中.气象学与气候学[M].北京:科学出版社,2010.
[2]  Tan P, Steinbach M, Kumar V, et al. Finding spatio-temporal patterns in earth science data[C]. Proceedings of KDD Workshop on Temporal Data Mining, San Francisco, U.S.A, 2001.
[3]  Wold S. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1): 37-52.
[4]  Klema V, Laub A. The singular value decomposition: Its computation and some applications[J]. IEEE Transactions on Automatic Control, 1980, 25(2): 164-176.
[5]  Han J W, Kamber M. Data mining: Concepts and technique[M]. San Francisco: Morgan Kaufmann, 2005.
[6]  邓敏,刘启亮,李光强,等.空间聚类分析及应用[M].北京:科学出版社,2011.
[7]  Fovell R, Fovell M. Climate zones of the conterminous United States defined using cluster analysis[J]. Journal of Climate, 1993,6(11),2103-2135.
[8]  Fovell R. Consensus clustering of U.S. temperature and precipitation data[J]. Journal of Climate, 1997,10(6):1405-1427.
[9]  Agarwal R, Srikant R. Fast algorithms for mining association rules[C]. Proceeding of the 20th International Conference on Very Large Databases, 1994,487-499.
[10]  Agarwal R, Srikant R. Mining sequential patterns[C]. Proceedings of the 11th International Conference on Data Engineering, 1995,3-14.
[11]  Mannila H, Toivonen H, Verkanmo A. Discovery of frequent episodes in event sequences[J]. Data Mining and Knowledge Discovery, 1997,1(3):259-289.
[12]  Das G, Lin K I, Mannila H, et al. Rule discovery from time series[C]. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, U.S.A, 1998, 16-22.
[13]  Harms S K, Deogun J, Tadesse T. Discovering sequential association rules with constrains and time lags in multiple sequences[C]. Proceedings of the 2002 International Symposium on Methodologies for Intelligent Systems, Lyon, France, 2002,431-441.
[14]  王佳璆,邓敏,程涛,等.时空序列数据分析和建模[M].北京:科学出版社,2012.
[15]  Cheng T, Wang J Q, Li X. A Hybrid framework for space-time modeling of environmental data[J]. Geographical Analysis, 2011,43(3):188-210.
[16]  孔令桥,秦昆,龙腾飞.利用二型模糊聚类进行全球海表温度数据挖掘[J].武汉大学学报(信息科学版),2012,37(2):215-219.
[17]  Wu T, Song G, Ma X J, et al. Mining geographic episode association patterns of abnormal events in global earth science data[J]. Science in China Series E: Technological Sciences, 2008,51(1):155-164.
[18]  Lin F, Jin X X, Hu C, et al. Discovery of teleconnections using data mining technologies in global climate datasets[J]. Data Science Journal, 2007,6(17):749-755.
[19]  Deng M, Liu Q L, Cheng T, Shi Y. An adaptive spatial clustering algorithm based on Delaunay triangulation[J]. Computers, Environment and Urban Systems, 2011,35(4):320-332.
[20]  Guo D. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP)[J]. International Journal of Geographical Information Science, 2008,22(7):801-823.
[21]  Tadesee T, Wilhite D A, Harms S K, et al. Drought monitoring using data mining techniques: A case study for Nebraska, USA[J]. Natural Hazards, 2004,33(1):137-159.
[22]  Bezdek J C, Nikhil R P. Some new indexes of cluster validity[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1998,28(3):307-310.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133