全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于RTTOV模式的大气二氧化碳反演参数敏感性分析

DOI: 10.3724/SP.J.1047.2014.00443, PP. 443-449

Keywords: RTTOV,二氧化碳,反演,敏感性分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

大气二氧化碳是开展全球气候变化和碳循环研究的关键数据。卫星遥感技术与模式模拟相结合的反演方法已成为获取该数据的重要手段,但模式输入参数本身的误差会对大气二氧化碳反演精度产生影响,须在反演算法设计中加以关注。本文利用RTTOV10快速辐射传输模式模拟Aqua/AIRS红外探测仪17个大气二氧化碳反演通道,计算了这些通道上大气顶出射辐射对温度廓线、臭氧廓线、水汽廓线、地表温度和地表发射率的参数误差的不确定性,并与二氧化碳增加0.5%时造成的不确定性进行对比,分析二氧化碳对上述参数误差的敏感性。结果表明,温度廓线误差是干扰AIRS大气二氧化碳反演的主要因素,其次是臭氧廓线误差,而水汽廓线、地表温度和地表发射率的误差对二氧化碳反演的影响在除去个别通道后可忽略不计。最后,本文以通道为单位,确定了各通道上的高敏感参数、敏感参数和不敏感参数,为二氧化碳反演通道的选择和反演算法的设计提供了参考。

References

[1]  IPCC. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC[M]. London:Cambridge University Press, 2007.
[2]  Alexiadis A. Global warming and human activity: A model for studying the potential instability of the carbon dioxide/temperature feedback mechanism[J]. Ecological Modelling, 2007, 203(3):243-256.
[3]  Ghommem M, Hajj M R, Puri I K. Influence of natural and anthropogenic carbon dioxide sequestration on global warming[J]. Ecological Modelling, 2012(235):1-7.
[4]  Florides G A, Christodoulides P. Global warming and carbon dioxide through sciences[J]. Environment International, 2009,35(2):390-401.
[5]  WMO, JMA. World Data Centre for Greenhouse Gases[EB/OL].(2001-07-02)[2013-05-06]. http://ds.data.jma.go. jp/gmd/wdcgg/index.html
[6]  石广玉,戴铁,徐娜.卫星遥感探测大气CO2浓度研究最新进展[J].地球科学进展,2010,25(1):7-13.
[7]  Mao J, Kawa S R. Sensitivity studies for space-based measurement of atmospheric total column carbon dioxide by reflected sunlight[J]. Applied Optics, 2004,43(4):914-927.
[8]  戴铁,石广玉,漆成莉,等.风云三号气象卫星红外分光计探测大气CO2浓度的通道敏感性分析[J].气候与环境研究,2011,16(5):577-585.
[9]  Strow L L, Hannon S E, Souza-Machado D, et al. An overview of the AIRS radiative transfer model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41 (2):303-313.
[10]  Strow L L, Hannon S E, Machado S D, et al. Validation of the Atmospheric Infrared Sounder radiative transfer algorithm[J]. Journal of Geophysical Research, 2006, 111(D9): 1-24.
[11]  Saunders R, Matricardi M, Brunel P. An improved fast radiative transfer model for assimilation of satellite radiance observations[J]. Quarterly Journal of the Royal Meteorological Society, 1999,125(556):1407-1425.
[12]  Matricardi M, Chevallier F, Kelly G, et al. An improved general fast radiative transfer model for the assimilation of radiance observations[J]. Quarterly Journal of the Royal Meteorological Society, 2004,130(596):153-173.
[13]  Hocking J, Rayer P, Saunders R. RTTOV v10 Users Guide[R]. Darmstadt, Germany: EUMETSAT, 2010.
[14]  叶函函,王先华,吴军,等.二氧化碳浓度高精度反演的敏感性研究[J].大气与环境光学学报,2011,6(3):208.
[15]  Chahine M, Barnet C, Olsen E T, et al. On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2[J]. Geophysical Research Letters, 2005, 32.
[16]  Crevoisier C, Chedin A, Scott N A. AIRS channel selection for CO2 and other trace-gas retrievals[J]. Quarterly Journal of the Royal Meteorological Society, 2003,129 (593):2719-2740.
[17]  NOAA US,Force USA.US standard atmosphere, 1976[R]. NOAA-S/T,1976.
[18]  Miller C E, Crisp D, DeCola P L, et al. Precision requirements for space-based XCO2 data[J]. Journal of Geophysical Research, 2007, 112.
[19]  高文华,赵凤生,盖长松.大气红外探测器(AIRS)温、湿度反演产品的有效性检验及在数值模式中的应用研究[J]. 气象学报,2006(3):271-280.
[20]  Gambacorta A, Barnet C D. Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013,51(6):3207-3216.
[21]  邹铭敏,陈良富,陶金花,等.短波红外通道CO2观测的温度敏感性分析[J].红外与毫米波学报,2012,31(5):455-461.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133