Hugo C, Paulo G, Mário C. Contribution of multispectral and multitemporal information from MODIS images to land cover classification[J]. Remote Sensing of Environment, 2008,112:986-997.
[2]
Wang DC, Gong JH, Chen LD, et al. Spatio-temporal pattern analysis of land use/cover change trajectories in Xihe watershed[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,14:12-21.
[3]
DabrowskaZ K, Gruszczynska M, Lewinski S, et al. Application of remote and in situ information to the management of wetlands in Poland[J]. Journal of Environmental Management, 2009,90(7):2261-2269.
[4]
Davranche A, Lefebvre G, Poulin B. Wetland monitoring using classification trees and SPOT5 seasonal time series[J]. Remote Sensing of Environment, 2010,114(3):552-562.
[5]
Toshihiro S, Cao V P, Aikihiko K, et al. Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery[J]. Landscape and Urban Planning, 2009,92:34-46.
Aleixandre V, Frédéric B, Marie W. A multisensor fusion approach to improve LAI time series[J]. Remote Sensing of Environment, 2011,115:2460-2470.
[8]
Wu CY, Niu Z, Gao S. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland[J]. Ecological Indicators, 2012,14:66-73.
[9]
Wu CY, Chen JM, Huang N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration[J]. Remote Sensing of Environment, 2011,115(12):3424-3435.
[10]
CherechaliS, Amram O, Flouzat G. Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes[J]. International Journal of Remote Sensing, 2000,21:753-775.
[11]
Fortin J P, Bernier M, Battay A E, et al. Estimation of surface variables at the sub-pixel level for use as input to climate and hydrological models[R]. Final report to Centre national d'études Spatiales (France)Rapport de recherché INRS-Eau, 2000.
[12]
Zhukov B, Oertel D, Lanzl F, et al. Unmixing-based multisensor multiresolution image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37:1212-1226.
[13]
Maselli F. Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses[J]. Remote Sensing of Environment, 2001,75:29-38.
[14]
Lorenzo B, Michele M, Roberto C. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment, 2008,112:118-131.
[15]
Liu DS, Pu RL. Downscaling thermal infrared radiance for subpixel land surface temperature retrieval[J]. Sensors,2008,8:2695-2706.
[16]
Roy D P, Ju JC, Philip L, et al. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data[J]. Remote Sensing of Environment, 2008,112:3112-3130.
[17]
Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44:2207-2218.
[18]
Thomas H, Michael AW, Nicholas C, et al. A new data fusion model for high spatial- and temporal- resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009,113:1613-1627.
[19]
Zhu XL, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment,2010,114:2610-2623.
[20]
Wu MQ, Niu Z, Wang CY, et al. The use of MODIS and Landsat time series data to generate high resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J]. Journal of Applied Remote Sensing, 2012:6:1-8.