全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多源遥感数据时空融合模型应用分析

DOI: 10.3724/SP.J.1047.2014.00776, PP. 776-783

Keywords: 时空融合,Landsat,图像处理,遥感,MODIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

多源遥感数据时空融合模型是解决目前遥感数据获取能力不足问题的重要方法之一,当前主要融合方法的研究,集中于平原区域,缺乏复杂条件下的多源遥感数据融合技术的应用研究。针对我国南方复杂条件,本文对比研究了多源遥感数据时空融合模型在我国南方复杂条件下的应用能力。针对LORENZO模型、LIU模型、统计回归模型、STARFM和ESTARFM5种主流多源遥感数据时空融合模型,采用Landsat-ETM+和MODIS数据,以江苏省南京市的小块区域为实验区,利用5种模型生产融合影像,以真实Landsat-ETM+数据为模板,定性和定量评价融合效果的好坏。结果表明除LORENZO模型外,其余4种模型获得的融合影像与真实影像之间都具有较高的相关性,相关系数均高于0.6,其中,ESTARFM模型的融合影像与真实影像间的相关性最高,融合效果最好,其次为STARFM模型,再次为LIU模型和统计模型法。在融合过程中采用距离、时间和光谱等信息越多,融合效果越好,在复杂地区的适用能力越强,融合影像更能反映地物的细节特征。

References

[1]  Hugo C, Paulo G, Mário C. Contribution of multispectral and multitemporal information from MODIS images to land cover classification[J]. Remote Sensing of Environment, 2008,112:986-997.
[2]  Wang DC, Gong JH, Chen LD, et al. Spatio-temporal pattern analysis of land use/cover change trajectories in Xihe watershed[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,14:12-21.
[3]  DabrowskaZ K, Gruszczynska M, Lewinski S, et al. Application of remote and in situ information to the management of wetlands in Poland[J]. Journal of Environmental Management, 2009,90(7):2261-2269.
[4]  Davranche A, Lefebvre G, Poulin B. Wetland monitoring using classification trees and SPOT5 seasonal time series[J]. Remote Sensing of Environment, 2010,114(3):552-562.
[5]  Toshihiro S, Cao V P, Aikihiko K, et al. Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery[J]. Landscape and Urban Planning, 2009,92:34-46.
[6]  蔡学良,崔远来.基于异源多时相遥感数据提取灌区作物种植结构[J]. 农业工程学报,2009,25(8):124-130.
[7]  Aleixandre V, Frédéric B, Marie W. A multisensor fusion approach to improve LAI time series[J]. Remote Sensing of Environment, 2011,115:2460-2470.
[8]  Wu CY, Niu Z, Gao S. The potential of the satellite derived green chlorophyll index for estimating midday light use efficiency in maize, coniferous forest and grassland[J]. Ecological Indicators, 2012,14:66-73.
[9]  Wu CY, Chen JM, Huang N. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: Evaluation and calibration[J]. Remote Sensing of Environment, 2011,115(12):3424-3435.
[10]  CherechaliS, Amram O, Flouzat G. Retrieval of temporal profiles of reflectances from simulated and real NOAA-AVHRR data over heterogeneous landscapes[J]. International Journal of Remote Sensing, 2000,21:753-775.
[11]  Fortin J P, Bernier M, Battay A E, et al. Estimation of surface variables at the sub-pixel level for use as input to climate and hydrological models[R]. Final report to Centre national d'études Spatiales (France)Rapport de recherché INRS-Eau, 2000.
[12]  Zhukov B, Oertel D, Lanzl F, et al. Unmixing-based multisensor multiresolution image fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37:1212-1226.
[13]  Maselli F. Definition of spatially variable spectral endmembers by locally calibrated multivariate regression analyses[J]. Remote Sensing of Environment, 2001,75:29-38.
[14]  Lorenzo B, Michele M, Roberto C. Combining medium and coarse spatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J]. Remote Sensing of Environment, 2008,112:118-131.
[15]  Liu DS, Pu RL. Downscaling thermal infrared radiance for subpixel land surface temperature retrieval[J]. Sensors,2008,8:2695-2706.
[16]  Roy D P, Ju JC, Philip L, et al. Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data[J]. Remote Sensing of Environment, 2008,112:3112-3130.
[17]  Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44:2207-2218.
[18]  Thomas H, Michael AW, Nicholas C, et al. A new data fusion model for high spatial- and temporal- resolution mapping of forest disturbance based on Landsat and MODIS[J]. Remote Sensing of Environment, 2009,113:1613-1627.
[19]  Zhu XL, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment,2010,114:2610-2623.
[20]  Wu MQ, Niu Z, Wang CY, et al. The use of MODIS and Landsat time series data to generate high resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model[J]. Journal of Applied Remote Sensing, 2012:6:1-8.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133