全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大数据时代的人类移动性研究

DOI: 10.3724/SP.J.1047.2014.00665, PP. 665-672

Keywords: 统计物理学,人类移动性,大数据,复杂网络,数据挖掘

Full-Text   Cite this paper   Add to My Lib

Abstract:

人类个体/群体移动特征是多学科共同关注的研究主题。移动定位、无线通讯和移动互联网技术的快速发展使得获取大规模、长时间序列、精细时空粒度的个体移动轨迹和相互作用定量化成为可能。同时,地理信息科学、统计物理学、复杂网络科学和计算机科学等多学科交叉也为人类移动性研究的定量化提供了有力支撑。本文首先系统总结了大数据时代开展人类移动性研究的多源异构数据基础和多学科研究方法,然后将人类移动性研究归纳为面向人和面向地理空间两大方向。面向人的研究侧重探索人类移动特性的统计规律,并建立模型解释相应的动力学机制,或分析人类活动模式,并预测出行或活动;面向地理空间的研究侧重从地理视角分析人类群体在地理空间中的移动,探索宏观活动和地理空间的交互特征。围绕这两大方向,本文评述了人类移动性的研究进展和存在问题,认为人类移动性研究在数据稀疏性、数据偏斜影响与处理、多源异构数据挖掘、机器学习方法等方面依然面临挑战,对多学科研究方法的交叉与融合提出了更高要求。

References

[1]  徐赞新,王钺,司洪波,等.基于随机矩阵理论的城市人群移动行为分析[J].物理学报,2011,60(4):46-52.
[2]  刘瑜,肖昱,高松,等.基于位置感知设备的人类移动研究综述[J].地理与地理信息科学,2011,27(4):8-13.
[3]  丁益民,杨昌平.考虑人类流动行为的动态复杂网络研究[J].物理学报,2012,61(23):551-556.
[4]  Rhee I, Shin M, Hong S, et al. On the levy-walk nature of human mobility[J]. IEEE/ACM Transactions on Networking, 2011,19(3):630-643.
[5]  Zheng Y, Xie X, Ma W Y. GeoLife: A collaborative social networking service among user, location and trajectory[J]. IEEE Data(base) Engineering Bulletin, 2010,33(2):32-39.
[6]  郑宇,谢幸.基于用户轨迹挖掘的智能位置服务[J].中国计算机学会通讯,2010,6(6):23-30.
[7]  申悦,柴彦威.基于GPS数据的北京市郊区巨型社区居民日常活动空间[J].地理学报,2013,68(4):506-516.
[8]  Liu Y, Kang C, Gao S, et al. Understanding intra-urban trip patterns from taxi trajectory data[J]. Journal of Geographical Systems, 2012,14(4):463-483.
[9]  Veloso M, Phithakkitnukoon S, Bento C. Sensing urban mobility with taxi flow[C].//Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks. ACM, 2011:41-44.
[10]  Yuan J, Zheng Y, Zhang C, et al. T-drive: driving directions based on taxi trajectories[C].//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2010:99-108.
[11]  郑宇.城市计算与大数据[J].中国计算机学会通讯,2013,9(8):6-16
[12]  Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding individual human mobility patterns[J]. Nature, 2008,453(7196):779-782.
[13]  Zipf G K. The P1 P2/D hypothesis: On the intercity movement of persons[J]. American sociological review, 1946:677-686.
[14]  Simini F, González M C, Maritan A, et al. A universal model for mobility and migration patterns[J]. Nature, 2012,484(7392):96-100.
[15]  Lenormand M, Huet S, Gargiulo F, et al. A universal model of commuting networks[J]. PloS ONE, 2012,7(10): e45985.
[16]  Kang C, Sobolevsky S, Liu Y, et al. Exploring human movements in Singapore: A comparative analysis based on mobile phone and taxicab usages[C].//Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing. ACM, 2013.
[17]  Ratti C, Williams S, Frenchman D, et al. Mobile landscapes: using location data from cell phones for urban analysis[J]. Environment and Planning B Planning and Design, 2006,33(5):727-748.
[18]  Andrienko G, Andrienko N, Bak P, et al. A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage[J]. Journal of Location Based Services, 2010,4(3-4):200-221.
[19]  Pei T, Sobolevsky S, Ratti C, et al. A New insight into land use classification based on aggregated mobile phone data[J]. arXiv preprint arXiv:1310.6129, 2013.
[20]  Csáji B C, Browet A, Traag V A, et al. Exploring the mobility of mobile phone users[J]. Physica A: Statistical Mechanics and its Applications, 2013,392(6):1459-1473.
[21]  Noulas A, Scellato S, Mascolo C, et al. An empirical study of geographic user activity patterns in Foursquare[J]. ICWSM, 2011,11:70-573.
[22]  Liu Y, Sui Z, Kang C, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-In data[J]. PloS ONE, 2014,9(1):e86026.
[23]  龙瀛,张宇,崔承印.利用公交刷卡数据分析北京职住关系和通勤出行[J].地理学报,2012,67(10):1339-1352.
[24]  Roth C, Kang S M, Batty M, et al. Structure of urban movements: polycentric activity and entangled hierarchical flows[J]. PloS one, 2011,6(1):e15923.
[25]  Froehlich J, Neumann J, Oliver N. Sensing and predicting the pulse of the city through shared bicycling[M]. International Joint Conferences on Artificial Intelligence. 2009:1420-1426.
[26]  汪秉宏,周涛,周昌松.人类行为,复杂网络及信息挖掘的统计物理研究[J].上海理工大学学报,2012,34(2):103-117.
[27]  周涛,韩筱璞,闫小勇,等.人类行为时空特性的统计力学[J].电子科技大学学报,2013,42(4):481-540.
[28]  Song C, Koren T, Wang P, et al. Modelling the scaling properties of human mobility[J]. Nature Physics, 2010,6(10):818-823.
[29]  Han X P, Hao Q, Wang B H, et al. Origin of the scaling law in human mobility: Hierarchy of traffic systems[J]. Physical Review E, 2011,83(3):036117.
[30]  Hu Y, Zhang J, Huan D, et al. Toward a general understanding of the scaling laws in human and animal mobility[J]. Europhysics Letters, 2011,96(3):38006.
[31]  Han X P, Wang B H. Impacts of distance and memory in the emergence of scaling mobility pattern of human[J]. Physics Procedia, 2010,3(5):1907-1911.
[32]  Di Lorenzo G, Calabrese F. Identifying human spatio-temporal activity patterns from mobile-phone traces[M]. Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on. IEEE, 2011:1069-1074.
[33]  Duan Y, Lu F. Structural robustness of city road networks based on community[J]. Computers, Environment and Urban Systems, 2013,41:75-87.
[34]  Kumar R, Novak J, Tomkins A. Structure and evolution of online social networks[M]. In: Yu Philip S., Han Jiawei, Faloutsos Christos. Link mining: models, algorithms, and applications. New York: Springer, 2010:337-357.
[35]  Gao S, Liu Y, Wang Y, et al. Discovering spatial interaction communities from mobile phone data[J]. Transactions in GIS, 2013,17(3):463-481.
[36]  De Vries J J, Nijkamp P, Rietveld P. Alonso's theory of movements: Developments in spatial interaction modeling[J]. Journal of Geographical Systems, 2001,3(3):233-256.
[37]  Noulas A, Scellato S, Lambiotte R, et al. A tale of many cities: universal patterns in human urban mobility[J]. PloS ONE, 2012,7(5):e37027.
[38]  Viswanathan G M. Levy Flight search patterns of wandering albatrosses[J]. Nature, 1996,381:413-415.
[39]  Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel[J]. Nature, 2006, 439(7075):462-465.
[40]  Liang X, Zheng X, Lv W, et al. The scaling of human mobility by taxis is exponential[J]. Physica A: Statistical Mechanics and its Applications, 2012,391(5):2135-2144.
[41]  Jiang B, Jia T. Exploring human mobility patterns based on location information of US flights[J]. arXiv preprint arXiv:1104.4578, 2011.
[42]  Roth C, Kang S M, Batty M, et al. Structure of urban movements: polycentric activity and entangled hierarchical flows[J]. PloS one, 2011,6(1):e15923.
[43]  王明生,黄琳,闫小勇.探索城市公交客流移动模式[J].电子科技大学学报,2012,41(1):2-7.
[44]  闫小勇.人类个体出行行为的统计实证[J].电子科技大学学报,2011,40(2):168-173.
[45]  Phithakkitnukoon S, Horanont T, Di Lorenzo G, et al. Activity-aware map: Identifying human daily activity pattern using mobile phone data[M]. In: Albert Ali Salah, Theo Gevers, Nicu Sebe, et al. Human Behavior Understanding. Berlin Heidelberg: Springer, 2010:14-25.
[46]  Farrahi K, Gatica-Perez D. Discovering human routines from cell phone data with topic models[C].//Wearable Computers, 2008. ISWC 2008. 12th IEEE International Symposium on. IEEE, 2008:29-32.
[47]  Huang L, Li Q, Yue Y. Activity identification from GPS trajectories using spatial temporal POIs' attractiveness[C].//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks. ACM, 2010:27-30.
[48]  Eagle N, Pentland A S. Eigenbehaviors: Identifying structure in routine[J]. Behavioral Ecology and Sociobiology, 2009,63(7):1057-1066.
[49]  Song C, Qu Z, Blumm N, et al. Limits of predictability in human mobility[J]. Science, 2010,327(5968):1018-1021.
[50]  Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users[J]. Personal and Ubiquitous Computing, 2003,7(5):275-286.
[51]  Calabrese F, Di Lorenzo G, Ratti C. Human mobility prediction based on individual and collective geographical preferences[C].//Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. IEEE, 2010:312-317.
[52]  Sadilek A, Kautz H, Bigham J P. Finding your friends and following them to where you are[C].//Proceedings of the fifth ACM international conference on Web search and data mining. ACM, 2012:723-732.
[53]  Baraglia R, Muntean C I, Nardini F M, et al. LearNext: learning to predict tourists movements[C].//Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013:751-756.
[54]  Toole J L, Ulm M, González M C, et al. Inferring land use from mobile phone activity[C]//Proceedings of the ACM SIGKDD International Workshop on Urban Computing. ACM, 2012:1-8.
[55]  Pan G, Qi G, Wu Z, et al. Land-use classification using taxi GPS traces[J]. Intelligent Transportation Systems, IEEE Transactions on, 2013,14(1):113-123.
[56]  陆锋,张恒才.大数据与广义GIS[J].武汉大学学报(信息科学版),2014,39(6):645-654.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133