Rhee I, Shin M, Hong S, et al. On the levy-walk nature of human mobility[J]. IEEE/ACM Transactions on Networking, 2011,19(3):630-643.
[5]
Zheng Y, Xie X, Ma W Y. GeoLife: A collaborative social networking service among user, location and trajectory[J]. IEEE Data(base) Engineering Bulletin, 2010,33(2):32-39.
Liu Y, Kang C, Gao S, et al. Understanding intra-urban trip patterns from taxi trajectory data[J]. Journal of Geographical Systems, 2012,14(4):463-483.
[9]
Veloso M, Phithakkitnukoon S, Bento C. Sensing urban mobility with taxi flow[C].//Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-Based Social Networks. ACM, 2011:41-44.
[10]
Yuan J, Zheng Y, Zhang C, et al. T-drive: driving directions based on taxi trajectories[C].//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 2010:99-108.
[11]
郑宇.城市计算与大数据[J].中国计算机学会通讯,2013,9(8):6-16
[12]
Gonzalez M C, Hidalgo C A, Barabasi A L. Understanding individual human mobility patterns[J]. Nature, 2008,453(7196):779-782.
[13]
Zipf G K. The P1 P2/D hypothesis: On the intercity movement of persons[J]. American sociological review, 1946:677-686.
[14]
Simini F, González M C, Maritan A, et al. A universal model for mobility and migration patterns[J]. Nature, 2012,484(7392):96-100.
[15]
Lenormand M, Huet S, Gargiulo F, et al. A universal model of commuting networks[J]. PloS ONE, 2012,7(10): e45985.
[16]
Kang C, Sobolevsky S, Liu Y, et al. Exploring human movements in Singapore: A comparative analysis based on mobile phone and taxicab usages[C].//Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing. ACM, 2013.
[17]
Ratti C, Williams S, Frenchman D, et al. Mobile landscapes: using location data from cell phones for urban analysis[J]. Environment and Planning B Planning and Design, 2006,33(5):727-748.
[18]
Andrienko G, Andrienko N, Bak P, et al. A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage[J]. Journal of Location Based Services, 2010,4(3-4):200-221.
[19]
Pei T, Sobolevsky S, Ratti C, et al. A New insight into land use classification based on aggregated mobile phone data[J]. arXiv preprint arXiv:1310.6129, 2013.
[20]
Csáji B C, Browet A, Traag V A, et al. Exploring the mobility of mobile phone users[J]. Physica A: Statistical Mechanics and its Applications, 2013,392(6):1459-1473.
[21]
Noulas A, Scellato S, Mascolo C, et al. An empirical study of geographic user activity patterns in Foursquare[J]. ICWSM, 2011,11:70-573.
[22]
Liu Y, Sui Z, Kang C, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-In data[J]. PloS ONE, 2014,9(1):e86026.
Roth C, Kang S M, Batty M, et al. Structure of urban movements: polycentric activity and entangled hierarchical flows[J]. PloS one, 2011,6(1):e15923.
[25]
Froehlich J, Neumann J, Oliver N. Sensing and predicting the pulse of the city through shared bicycling[M]. International Joint Conferences on Artificial Intelligence. 2009:1420-1426.
Song C, Koren T, Wang P, et al. Modelling the scaling properties of human mobility[J]. Nature Physics, 2010,6(10):818-823.
[29]
Han X P, Hao Q, Wang B H, et al. Origin of the scaling law in human mobility: Hierarchy of traffic systems[J]. Physical Review E, 2011,83(3):036117.
[30]
Hu Y, Zhang J, Huan D, et al. Toward a general understanding of the scaling laws in human and animal mobility[J]. Europhysics Letters, 2011,96(3):38006.
[31]
Han X P, Wang B H. Impacts of distance and memory in the emergence of scaling mobility pattern of human[J]. Physics Procedia, 2010,3(5):1907-1911.
[32]
Di Lorenzo G, Calabrese F. Identifying human spatio-temporal activity patterns from mobile-phone traces[M]. Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on. IEEE, 2011:1069-1074.
[33]
Duan Y, Lu F. Structural robustness of city road networks based on community[J]. Computers, Environment and Urban Systems, 2013,41:75-87.
[34]
Kumar R, Novak J, Tomkins A. Structure and evolution of online social networks[M]. In: Yu Philip S., Han Jiawei, Faloutsos Christos. Link mining: models, algorithms, and applications. New York: Springer, 2010:337-357.
[35]
Gao S, Liu Y, Wang Y, et al. Discovering spatial interaction communities from mobile phone data[J]. Transactions in GIS, 2013,17(3):463-481.
[36]
De Vries J J, Nijkamp P, Rietveld P. Alonso's theory of movements: Developments in spatial interaction modeling[J]. Journal of Geographical Systems, 2001,3(3):233-256.
[37]
Noulas A, Scellato S, Lambiotte R, et al. A tale of many cities: universal patterns in human urban mobility[J]. PloS ONE, 2012,7(5):e37027.
[38]
Viswanathan G M. Levy Flight search patterns of wandering albatrosses[J]. Nature, 1996,381:413-415.
[39]
Brockmann D, Hufnagel L, Geisel T. The scaling laws of human travel[J]. Nature, 2006, 439(7075):462-465.
[40]
Liang X, Zheng X, Lv W, et al. The scaling of human mobility by taxis is exponential[J]. Physica A: Statistical Mechanics and its Applications, 2012,391(5):2135-2144.
[41]
Jiang B, Jia T. Exploring human mobility patterns based on location information of US flights[J]. arXiv preprint arXiv:1104.4578, 2011.
[42]
Roth C, Kang S M, Batty M, et al. Structure of urban movements: polycentric activity and entangled hierarchical flows[J]. PloS one, 2011,6(1):e15923.
Phithakkitnukoon S, Horanont T, Di Lorenzo G, et al. Activity-aware map: Identifying human daily activity pattern using mobile phone data[M]. In: Albert Ali Salah, Theo Gevers, Nicu Sebe, et al. Human Behavior Understanding. Berlin Heidelberg: Springer, 2010:14-25.
[46]
Farrahi K, Gatica-Perez D. Discovering human routines from cell phone data with topic models[C].//Wearable Computers, 2008. ISWC 2008. 12th IEEE International Symposium on. IEEE, 2008:29-32.
[47]
Huang L, Li Q, Yue Y. Activity identification from GPS trajectories using spatial temporal POIs' attractiveness[C].//Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks. ACM, 2010:27-30.
[48]
Eagle N, Pentland A S. Eigenbehaviors: Identifying structure in routine[J]. Behavioral Ecology and Sociobiology, 2009,63(7):1057-1066.
[49]
Song C, Qu Z, Blumm N, et al. Limits of predictability in human mobility[J]. Science, 2010,327(5968):1018-1021.
[50]
Ashbrook D, Starner T. Using GPS to learn significant locations and predict movement across multiple users[J]. Personal and Ubiquitous Computing, 2003,7(5):275-286.
[51]
Calabrese F, Di Lorenzo G, Ratti C. Human mobility prediction based on individual and collective geographical preferences[C].//Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on. IEEE, 2010:312-317.
[52]
Sadilek A, Kautz H, Bigham J P. Finding your friends and following them to where you are[C].//Proceedings of the fifth ACM international conference on Web search and data mining. ACM, 2012:723-732.
[53]
Baraglia R, Muntean C I, Nardini F M, et al. LearNext: learning to predict tourists movements[C].//Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013:751-756.
[54]
Toole J L, Ulm M, González M C, et al. Inferring land use from mobile phone activity[C]//Proceedings of the ACM SIGKDD International Workshop on Urban Computing. ACM, 2012:1-8.
[55]
Pan G, Qi G, Wu Z, et al. Land-use classification using taxi GPS traces[J]. Intelligent Transportation Systems, IEEE Transactions on, 2013,14(1):113-123.