Svirejeva-Hopkins A, Schellnhuber H J, Pomaz V L. Urbanised territories as a specific component of the global carbon cycle[J]. EcologicalModeling, 2004, 173(2): 295-312.
Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial andoceanic components[J]. Science, 1998, 281(5374): 237.
[7]
Buyantuyev A, Wu J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case studyof the Phoenix metropolitan region, USA[J]. Journal ofArid Environments, 2009, 73(4-5): 512-520.
[8]
Xu C, Liu M, An S, et al. Assessing the impact of urbanization on regional net primary productivity in Jiangyln County, China[J]. Journal of Environmental Management, 2007, 85(3): 597-606.
[9]
Yu D R, Shao H B, Shi P J, et al. How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen city, China[J]. Agricultural and Forest Meteorology, 2009, 149(11): 2054-2060.
[10]
Wu S H, Zhou S L, Chen D X, et al. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China[J]. Science of the Total Environment, 2014, 472: 397-406.
[11]
Kaye J P, McCulley R L, Burke I C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacenturban, native and agricultural ecosystems[J]. Global Change Biology, 2005, 11(4): 575-587.
Li X, Yeh A G O. Zoning land for agricultural protection by the integration of remote sensing, GIS, and cellular automata[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(4): 471-478.
[14]
Li X, Liu X. An extended cellular automaton using casebased reasoning for simulating urban development in a large complex region[J]. International Journal of Geographical Information Science, 2006, 20(10): 1109-1136.
[15]
Liu X, Li X P, Shi X, et al. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata[J]. International Journal of Geographical Information Science, 2010, 24(5): 783-802.
[16]
Wu F L. Calibration of stochastic cellular automata: the application to rural-urban land conversions[J]. International Journal of Geographical Information Science, 2002, 16(8): 795-818.
[17]
Li X, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 2002, 16(4): 323-343.
[18]
Arsanjani J J, Helbich M, Kainz W, et al. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 265-275.
[19]
He C Y, Zhao Y Y, Tian J, et al. Modeling the urban landscape dynamics in a megalopolitan cluster area by incorporating a gravitational field model with cellular automata[J]. Landscape and Urban Planning, 2013, 113: 78-89.
[20]
Liu J Y, Liu M L, Tian H Q, et al. Spatial and temporal patterns of China's cropland during 1990-2000: An analysis based on Landsat TM data[J]. Remote Sensing of Environment, 2005, 98(4): 442-456.
[21]
罗天祥. 中国主要森林类型生物生产力格局及其数学模型[D]. 北京: 中国科学院, 1996.
[22]
Myneni R B, Dong J, Tucker C J, et al. A large carbon sink in the woody biomass of northern forests[J]. Proceedings of the National Academy of Sciences, 2001, 98(26): 14784.
[23]
Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981-2000[J]. Science in China Series D: Earth Sciences, 2007, 50(9): 1341-1350.
[24]
Wilson A G. Entropy in urban and regional modelling[M]. London: Pion Press, 1970.
[25]
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]. Neural Networks, 2004 IEEE International Joint Conference, 2004, 2: 985-990.
[26]
Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[27]
Running S W, Gower S T. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets[J]. Tree Physiology, 1991, 9(1-2): 147.
[28]
Running S W, Hunt E R. Generalization of a forest ecosystem process model for other Biomes, Biome-BGC, and an application for global-scale models[J]. Scaling physiological processes: Leaf to globe. Waltham: Academic Press, 1993, 141-158.
[29]
Wang Q X, Watanabe M, Zhu O Y. Simulation of water and carbon fluxes using Biome-BGC model over crops in China[J]. Agricultural and Forest Meteorology, 2005, 131(3-4): 209-224.
Wang S Q, Zhou L, Chen J M, et al. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance[J]. Journal of Environmental Management, 2011, 92: 1651-1662.
[32]
Pei F S, Li X, Liu X P, et al. Exploring the response of net primary productivity variations to urban expansion and climate change: A scenario analysis for Guangdong Province in China[J]. Journal of Environmental Management, 2015, 150: 92-102.
Pei F S, Li X, Liu X P, et al. Assessing the impacts of droughts on net primary productivity in China[J]. Journal of Environmental Management, 2013, 114: 362-371.
[36]
Pei F S, Li X, Liu X P, et al. Assessing the differences in net primary productivity between pre-and post-urban land development in China[J]. Agricultural and Forest Meteorology, 2013, 171-172: 174-186.