全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

城市扩张驱动下植被净第一性生产力动态模拟研究——以广东省为例

DOI: 10.3724/SP.J.1047.2015.00469, PP. 469-477

Keywords: 空间相互作用,极限学习机,元胞自动机,净第一性生产力

Full-Text   Cite this paper   Add to My Lib

Abstract:

城市间相互作用对城市扩张时空演变及其植被碳循环效应具有重要影响。本文将城市相互作用因子引入到元胞自动机(CA)的城市扩张模拟中,使用极限学习机(ELM)来自动获取CA的转换规则,并提出了ELM-CA模型;结合Biome-BGC模型,以广东省为例,对未来城市扩张及其植被净第一性生产力(NPP)效应进行耦合研究。结果表明ELM-CA模型无需人工确定各变量权重大小,在不同类型变量的参数获取方面具有优势。通过嵌入城市间相互作用,ELM-CA模型能较好地模拟广东省城市用地扩张过程和格局。另外,广东省城市用地扩张对植被NPP具有重要影响,主要表现为城市用地的增加显著地降低植被NPP。按2000-2005年间城市扩张趋势,到2020年,由城市用地扩张导致的植被NPP降低约占广东省植被NPP的1.79%。引导城市合理扩张,对于维持生态系统碳平衡、促进社会经济的可持续发展具有重要意义。

References

[1]  王雷, 李丛丛, 应清, 等. 中国1990-2010 年城市扩张卫星遥感制图[J]. 科学通报, 2012, 57(18): 1588-1599.
[2]  林伯强, 刘希颖. 中国城市化阶段的碳排放、影响因素和减排策略[J]. 经济研究, 2010(8): 66-78.
[3]  Svirejeva-Hopkins A, Schellnhuber H J, Pomaz V L. Urbanised territories as a specific component of the global carbon cycle[J]. EcologicalModeling, 2004, 173(2): 295-312.
[4]  温家石, 葛滢, 焦荔, 等. 城市土地利用是否会降低区域碳吸收能力?——台州市案例研究[J]. 植物生态学报, 2010, 34(6): 651-660.
[5]  赵荣钦, 黄贤金, 彭补拙. 南京城市系统碳循环与碳平衡分析[J]. 地理学报, 2012, 67(6): 758-770.
[6]  Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial andoceanic components[J]. Science, 1998, 281(5374): 237.
[7]  Buyantuyev A, Wu J. Urbanization alters spatiotemporal patterns of ecosystem primary production: A case studyof the Phoenix metropolitan region, USA[J]. Journal ofArid Environments, 2009, 73(4-5): 512-520.
[8]  Xu C, Liu M, An S, et al. Assessing the impact of urbanization on regional net primary productivity in Jiangyln County, China[J]. Journal of Environmental Management, 2007, 85(3): 597-606.
[9]  Yu D R, Shao H B, Shi P J, et al. How does the conversion of land cover to urban use affect net primary productivity? A case study in Shenzhen city, China[J]. Agricultural and Forest Meteorology, 2009, 149(11): 2054-2060.
[10]  Wu S H, Zhou S L, Chen D X, et al. Determining the contributions of urbanisation and climate change to NPP variations over the last decade in the Yangtze River Delta, China[J]. Science of the Total Environment, 2014, 472: 397-406.
[11]  Kaye J P, McCulley R L, Burke I C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacenturban, native and agricultural ecosystems[J]. Global Change Biology, 2005, 11(4): 575-587.
[12]  周成虎, 孙战利, 谢一春. 地理元胞自动机研究[M]. 北京: 科学出版社, 1999: 6-21.
[13]  Li X, Yeh A G O. Zoning land for agricultural protection by the integration of remote sensing, GIS, and cellular automata[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67(4): 471-478.
[14]  Li X, Liu X. An extended cellular automaton using casebased reasoning for simulating urban development in a large complex region[J]. International Journal of Geographical Information Science, 2006, 20(10): 1109-1136.
[15]  Liu X, Li X P, Shi X, et al. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata[J]. International Journal of Geographical Information Science, 2010, 24(5): 783-802.
[16]  Wu F L. Calibration of stochastic cellular automata: the application to rural-urban land conversions[J]. International Journal of Geographical Information Science, 2002, 16(8): 795-818.
[17]  Li X, Yeh A G O. Neural-network-based cellular automata for simulating multiple land use changes using GIS[J]. International Journal of Geographical Information Science, 2002, 16(4): 323-343.
[18]  Arsanjani J J, Helbich M, Kainz W, et al. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 265-275.
[19]  He C Y, Zhao Y Y, Tian J, et al. Modeling the urban landscape dynamics in a megalopolitan cluster area by incorporating a gravitational field model with cellular automata[J]. Landscape and Urban Planning, 2013, 113: 78-89.
[20]  Liu J Y, Liu M L, Tian H Q, et al. Spatial and temporal patterns of China's cropland during 1990-2000: An analysis based on Landsat TM data[J]. Remote Sensing of Environment, 2005, 98(4): 442-456.
[21]  罗天祥. 中国主要森林类型生物生产力格局及其数学模型[D]. 北京: 中国科学院, 1996.
[22]  Myneni R B, Dong J, Tucker C J, et al. A large carbon sink in the woody biomass of northern forests[J]. Proceedings of the National Academy of Sciences, 2001, 98(26): 14784.
[23]  Fang J Y, Guo Z D, Piao S L, et al. Terrestrial vegetation carbon sinks in China, 1981-2000[J]. Science in China Series D: Earth Sciences, 2007, 50(9): 1341-1350.
[24]  Wilson A G. Entropy in urban and regional modelling[M]. London: Pion Press, 1970.
[25]  Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: A new learning scheme of feedforward neural networks[C]. Neural Networks, 2004 IEEE International Joint Conference, 2004, 2: 985-990.
[26]  Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[27]  Running S W, Gower S T. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets[J]. Tree Physiology, 1991, 9(1-2): 147.
[28]  Running S W, Hunt E R. Generalization of a forest ecosystem process model for other Biomes, Biome-BGC, and an application for global-scale models[J]. Scaling physiological processes: Leaf to globe. Waltham: Academic Press, 1993, 141-158.
[29]  Wang Q X, Watanabe M, Zhu O Y. Simulation of water and carbon fluxes using Biome-BGC model over crops in China[J]. Agricultural and Forest Meteorology, 2005, 131(3-4): 209-224.
[30]  戴铭, 周涛, 杨玲玲, 等. 基于森林详查与遥感数据降尺度技术估算中国林龄的空间分布[J]. 地理研究, 2011, 30(1): 172-184.
[31]  Wang S Q, Zhou L, Chen J M, et al. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance[J]. Journal of Environmental Management, 2011, 92: 1651-1662.
[32]  Pei F S, Li X, Liu X P, et al. Exploring the response of net primary productivity variations to urban expansion and climate change: A scenario analysis for Guangdong Province in China[J]. Journal of Environmental Management, 2015, 150: 92-102.
[33]  罗艳, 王春林. 基于MODIS NDVI 的广东省陆地生态系统净初级生产力估算[J]. 生态环境学报, 2009(4): 1467-1471.
[34]  郭志华, 李琼婵. 广东省植被潜在生产力的估算及其分布[J]. 热带亚热带植物学报, 1997, 5(1): 45-52.
[35]  Pei F S, Li X, Liu X P, et al. Assessing the impacts of droughts on net primary productivity in China[J]. Journal of Environmental Management, 2013, 114: 362-371.
[36]  Pei F S, Li X, Liu X P, et al. Assessing the differences in net primary productivity between pre-and post-urban land development in China[J]. Agricultural and Forest Meteorology, 2013, 171-172: 174-186.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133