全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

匿名集序列规则与转移概率矩阵的空间预测和实验

DOI: 10.3724/SP.J.1047.2015.00391, PP. 391-400

Keywords: 时空K-匿名,序列规则,马尔科夫链,空间预测,转移概率矩阵

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着位置服务(LocationBasedService,LBS)的广泛应用,隐私保护成为LBS进一步深入发展亟待解决的问题,时空K-匿名成为一个主流方向。LBS应用服务器存储用户执行连续查询生成的历史匿名数据集,分析大时空尺度历史的匿名数据集,空间预测可以实现LBS应用的个性化服务。本文提出了一种融合概率统计与数据挖掘2种典型技术——马尔科夫链与序列规则,对匿名数据集中包含的特定空间区域进行预测的方法。方法包括4个过程(1)分析序列规则、马尔科夫过程进行预测的特点;(2)以匿名数据集序列规则的均一化置信度为初始转移概率,构建n步转移概率矩阵;(3)设计以n步转移概率矩阵进行概略空间预测的方法,以及改进的指定精确路径的空间预测方法;(4)实验验证方法的性能。结果证明,该方法具有模型结构建立速度快、精确空间预测概率与真实概率的近似度可灵活调节等优点,具有可用性。

References

[1]  Baldauf M, Dustdar S, Rosenberg F. A survey on context aware systems[C]. In Proceedings of IJAHUC, 2007: 263-277.
[2]  王璐, 孟小峰. 位置大数据隐私保护研究综述[J]. 软件学报, 2014, 25(4): 693-712.
[3]  Duckham M, Kulik F. Location Privacy and Location-Aware Computing in Dynamic & Mobile GIS: Investigating Change in Space and Time[M]. Boca Raton: CRC Press, 2006: 1-16.
[4]  Gruteser M, Grunwald D. Anonymous usage of locationbased services through spatial and temporal cloaking[C]. In Proceedings of MobiSys, 2003.
[5]  Krumm J. A survey of computational location privacy[C]. In Proceedings of Personal and Ubiquitous Computing, 2009: 391-399.
[6]  张海涛, 黄慧慧, 徐亮, 等. 隐私保护数据挖掘研究进展[J]. 计算机应用研究, 2013, 12(12): 3529-3535.
[7]  Hu H, Xu J, Lee D L. PAM: An efficient and privacyaware monitoring framework for continuously moving objects[C]. In Proceedings of IEEE Transaction on Knowledge and Data Engineering, 2010: 404-419.
[8]  Chen J, Cheng R, Mokbel M F, et al. Scalable processing of snapshot and continuous nearest-neighbor queries overone-dimensional uncertain data[C]. In Proceedings ofVLDB J, 2009: 1219-1240.
[9]  Pan X, Meng X, Xu J. Distortion-based anonymity for continuous queries in location-based mobile services[C]. In Proceedings of GIS, 2009: 256-265.
[10]  Fournier-Viger P, Nkambou R, Tseng V S. RuleGrowth: Mining sequential rules common to several sequences by pattern-growth[C]. In Proceedings of SAC, 2011: 956-961.
[11]  Fournier-Viger P, Tseng V S. Mining top-K sequential rules[C]. In Proceedings of Hf-Based High-k Dielectrics, 2011: 180-194.
[12]  Fournier-Viger P, Faghihi U, Nkambou R, et al. CMRules: Mining sequential rules common to several sequences[J]. Knowledge-based Systems, Elsevier, 2012, 25(1): 63-76.
[13]  Fournier-Viger P, Tseng V S. TNS: Mining top-K non-redundant sequential rules[C]. In Proceedings of 28th Symposium on Applied Computing, 2013: 164-166.
[14]  刘次华. 随机过程(第四版)[M]. 武汉: 华中科技大学出版社, 2008: 42-49.
[15]  陆锋, 刘康, 陈洁. 大数据时代的人类移动性研究[J]. 地球信息科学学报, 2014, 16(5): 665-672.
[16]  Kim W. Behavior-based mobility prediction for seamless handoffs in mobile wireless networks[C]. In Proceedings of Wireless Networks, 2011: 645-658.
[17]  Giannotti F, Nanni M, Pedreschi D, et al. Mining mobility behavior from trajectory data[C]. In Proceedings of CSE(4), 2009: 948-951.
[18]  张海涛, 高莎莎, 徐亮. 空时K-匿名数据的关联规则挖掘研究[J]. 地理与地理信息科学, 2012, 11(6): 13-16.
[19]  Gao S S. Research on association rules and sequential patterns mining of spatial-temporal K-anonymity dataset[D]. Nanjing: Nanjing University of Posts & Telecommunications, 2013.
[20]  Cheng J, Greiner R. Learning Bayesian belief network classifiers: Algorithms and system[C]. In Proceedings ofCanadian Conference on AI, 2001: 141-151.
[21]  张连文, 郭海鹏. 贝叶斯网引论[M]. 北京: 科学出版社, 2006: 81-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133