全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种异构多核架构快速查询多边形图层间空间关系的方法

DOI: 10.3724/SP.J.1047.2015.00547, PP. 547-555

Keywords: 空间关系查询,GPU,异构多核,并行计算,拓扑关系

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前,空间关系查询中常用的PlaneSweep算法是一种串行方法,而关于多核CPU的并行查询算法,在面对海量数据查询时,由于CPU核心数及线程数量的限制,其难以满足查询效率需求。针对该问题,本文提出了一种全新的异构多核架构多边形图层间空间关系查询的并行算法。首先,利用STR树索引过滤不相交的多边形;然后,对过滤后多边形的线段构建四叉树索引,利用CPU+GPU架构并行计算线段的相交以判断多边形环间的拓扑关系;再根据环间的拓扑关系计算多边形间的维度扩展九交模型(DE-9IM)参数值,据此确定多边形间的空间关系;最后,通过实验验证了该算法的准确性和高效性。实验表明,本算法能有效缩短大数据量的空间查询时间。在实验中逐渐增加目标数据集和源数据集多边形的数量,当两数据集都为50000个多边形时,以包含关系为例,相比于ArcGIS,本文提出的算法可达到2倍的加速比。

References

[1]  王结臣,王豹,胡玮,等.并行空间分析算法研究进展及评 述[J].地理与地理信息科学,2011,27(6):1-5.
[2]  Owens J D, Luebke D, Govindaraju N, et al. A Survey of General-purpose computation on graphics hardware[J]. Computer graphics forum, 2007,26(1):80-113.
[3]  张舒,褚艳利.GPU 高性能运算之CUDA[M].北京:中国 水利水电出版社,2009.
[4]  Shamos M I, Hoey D. Geometric intersection problems
[5]  [C]. 17th Annual Symposium on Foundations of Computer Science, IEEE, 1976:208-215.
[6]  Bentley J L, Ottmann T A. Algorithms for reporting and counting geometric intersection[J]. IEEE Transactions on Computers, 1979,100(9):643-647.
[7]  Bartuschka U, Mehlhorn K, N?her S. A robust and efficient implementation of a sweep line algorithm for the straight line segment intersection problem[C]. Proceedings ofWorkshop on Algorithm Engineering, 1997.
[8]  Chazelle B, Edelsbrunner H. An optimal algorithm for intersecting line segments in the plane[J]. JACM, 1992,39:1-54.
[9]  Balaban I J. An optimal algorithm for finding segments intersections[C]. Proceedings of the eleventh annual symposium on Computational geometry, ACM, 1995:211-219.
[10]  Andrews D S, Snoeyink J, Boritz J, et al. Further comparison of algorithms for geometric intersection problems[C]. 6th International Symposium on Spatial Data Handling, 1994.
[11]  Aggarwal A, Chazelle B, Guibas L, et al. Parallel computational geometry[J]. Algorithmica, 1988,3(1-4):293-327.
[12]  Atallah M J, Goodrich M T. Efficient plane sweeping in parallel[C]. Proceedings of the second annual symposium on Computational geometry, ACM, 1986:216-225.
[13]  Goodrich M T, Ghouse M R, Bright J. Sweep methods for parallel computational geometry[J]. Algorithmica, 1996, 15(2):126-153.
[14]  Herring J. OpenGIS implementation standard for geographic information-simple feature access-part 1: Common architecture[R]. Wayland: Open Geospatial Consortium Inc, 2011.
[15]  Leutenegger S T, Lopez M A, Edgington J. STR: A simple and efficient algorithm for R-tree packing[C]. 13th International Conference on Data Engineering, IEEE, 1997: 497-506.
[16]  周伟明.多核计算与程序设计[M].武汉:华中科技大学出 版社,2009.
[17]  Samet H, Webber R E. Storing a collection of polygons using quadtrees[J]. ACM Transactions on Graphics (TOG), 1985,4(3):182-222.
[18]  Samet H, Webber R E. On encoding boundaries with quadtrees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984(3):365-369.
[19]  Shneier M. Calculations of geometric properties using quadtrees[J]. Computer Graphics and Image Processing, 1981,16(3):296-302.
[20]  Shewchuk J R. Adaptive precision floating-point arithmetic and fast robust geometric predicates[J]. Discrete & Computational Geometry, 1997,18(3):305-363.
[21]  Brisebarre N, De Dinechin F, Jeannerod C P, et al. Handbook of floating-point arithmetic[M]. Boston: Birkh?user Boston Publisher, 2010.
[22]  王舒鹏,方莉.混合积判断线段相交的方法分析[J].电脑 开发与应用,2006,19(10):34-35.
[23]  Egenhofer M J, Herring J. Categorizing binary topological relations between regions, lines and points in geographic databases[R]. Orono: Department of Surveying Engineering, University of Maine, 1991.
[24]  虞强源,刘大有,谢琦.空间区域拓扑关系分析方法综述[J].软件学报,2003,14(4):777-782.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133