Tague C L, Band L E. Evaluating explicit and implicit routing for watershed hydro-ecological models of forest hydrology at the small catchment scale[J]. Hydrological Processes, 2001,15(8):1415-1439.
[2]
Borah D K, Bera M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications[J]. Transactions of the ASAE, 2004,47(3):789-803.
Meals DW, Dressing S A, Davenport T E. Lag time in water quality response to best management practices: A review[J]. Journal of Environmental Quality, 2010,39(1):85-96.
[5]
Chen J M, Chen X F, Ju W. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity[J]. Biogeosciences, 2013,10:4879-4896.
Wood E F, Roundy J K, Troy T J, et al. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water[J]. Water Resources Research, 2011,47(5): doi:10.1029/2010WR010090.
[9]
Vivoni E R, Mascaro G, Mniszewski S, et al. Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment[J]. Journal of Hydrology, 2011,409(1-2):483-496.
[10]
Seo J K, Sugimurab T, Kim A S. OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark[J]. Computers & Geosciences, 2015,75:66-72.
Ran Q H, Su D Y, Fu X D, et al. A physics-based hydrogeomorphologic simulation utilizing cluster parallel computing[J]. Science China (Technological Sciences), 2013, 56(8):1883-1895.
Xu R, Huang X X, Luo L, et al. A new grid-associated algorithm in the distributed hydrological model simulations[J]. Science China-Technological Sciences, 2010,53(1): 235-241.
[15]
Li T J, Wang G Q, Chen J, et al. Dynamic parallelization of hydrological model simulations[J]. Environmental Modelling & Software, 2011,26(12):1736-1746.
[16]
Wang H, Fu X,Wang G, et al. A common parallel computing framework for modeling hydrological processes of river basins[J]. Parallel Computing, 2011, 37(6-7):302-315.
[17]
Band L E, Tague C L, Brun S E, et al. Modelling watersheds as spatial object hierarchies: Structure and dynamics[J]. Transactions in GIS, 2000,4:181-196.
[18]
Grayson R B, Moore I D, Mcmahon T A. Physically based hydrologic modeling:1. A terrain-based model for investigative purposes[J]. Water Resources Research, 1992,28(10),2639-2658.
[19]
Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. Water Resources Research, 1994,30(6):1665-1679.
Goodchild M F. The validity and usefulness of laws in geographic information science and geography[J]. Annals of the Association of American Geographers, 2004,94: 300-303.
[23]
Wang S, Armstrong M P. A theoretical approach to the use of cyberinfrastructure in geographical analysis[J]. International Journal of Geographical Information Science, 2009,23(2):169-193.
[24]
Wang H, Fu X D, Wang Y J, et al. A high-performance temporal-spatial discretization method for the parallel computing of river basins[J]. Computer & Geosciences, 2013,58:62-68.
Liu Y B, Gebremeskel S, De Smedt F, et al. Predicting storm runoff from different land use classes using a GISbased distributed model[J]. Hydrological Processes, 2006, 20:533-548.
[28]
Liu J Z, Zhu A X, Liu Y B, et al. A layered approach to parallel computing for spatially distributed hydrologic modeling[J]. Environmental Modeling & Software, 2014, 51(1):221-227.
[29]
Tobler W. A computer movie simulating urban growth in the detroit region[J]. EconomicGeography, 1970,46(2):234-240.