Hutchison K D, Faruqui S J, Smith S. Improving correlations between MODIS aerosol optical thickness and ground-based PM 2.5 observations through 3D spatial analyses[J]. Atmospheric Environment, 2008,42(3):530-543.
[4]
Hutchison K D, Smith S, Faruqui S J. Correlating MODIS aerosol optical thickness data with ground-based PM2.5 observations across Texas for use in a real-time air quality prediction system[J]. Atmospheric Environment, 2005,39(37):7190-7203.
[5]
Schaap M, Apituley A, Timmermans R M A, et al . Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands[J]. Atmospheric Chemistry and Physics, 2009,9(3):909-925.
[6]
Yao L, Lu N, Jiang S. Artificial neural network (ANN) for multi-source PM2.5 Estimation using surface, MODIS, and meteorological data[C]. 2012 IEEE International Conference on Biomedical Engineering and Biotechnology, 2012:1228-1231.
[7]
Zhao Q, Gao W, Xiang W, et al . Analysis of air quality variability in Shanghai using AOD and API data in the recent decade[J]. Frontiers of Earth Science, 2013,7(2):1-10.
[8]
Gupta P, Patadia F, Christopher S A. Multisensor data product fusion for aerosol research[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(5):1407-1415.
[9]
Nirala M. Technical Note: Multi-sensor data fusion of aerosol optical thickness[J]. International Journal of Remote Sensing, 2008,29(7):2127-2136.
[10]
Xu Q, Obradovic Z, Han B, et al . Improving aerosol retrieval accuracy by integrating AERONET, MISR and MODIS data[C]. 8th IEEE International Conference on Information Fusion, 2005:1-7.
[11]
Chatterjee A, Michalak A M, Kahn R A, et al . A geostatistical data fusion technique for merging remote sensing and ground-based observations of aerosol optical thickness[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2010,115(D20):898-907.
[12]
Nguyen H, Cressie N, Braverman A. Spatial statistical data fusion for remote sensing applications[J]. Journal of the American Statistical Association, 2012,107(499):1004-1018.
[13]
Jinnagara Puttaswamy S, Nguyen H M, Braverman A, et al . Statistical data fusion of multi-sensor AOD over the Continental United States[J]. Geocarto International, 2014,29(1):1-17.
[14]
Agterberg F P. Autocorrelation functions in geology[A]. In Merriam D F(ed.). Geostatistics[M]. Springer, 1970:113-141.
[15]
Bretherton F P, Davis R E, Fandry C B. A technique for objective analysis and design of oceanographic experiments applied to MODE-73[J]. Deep Sea Research and Oceanographic Abstracts, 1976,23(7):559-582.
[16]
Guzzi R, Ballista G, Nicolantonio W D, et al . Aerosol maps from GOME data[J]. Atmospheric environment, 2001,35(30):5079-5091.
[17]
Bergamasco A, Teatini P, Carbognin L. Confronto critico trakriging e analisi oggettiva[J]. Il Nuovo Cimento C, 1993,16(3):289-302.
Wang J F, Li L F, Christakos G. Sampling and Kriging spatial means: Efficiency and conditions[J]. Sensors, 2009,9(7):5224-5240.
[21]
Hao W, Chang X. Comparison of Spatial Interpolation Methods for Precipitation in Ningxia, China[J]. International Journal of Science and Research,2013,2(8):181-184.
[22]
Ge J M, Su J, Fu Q, et al . Dust aerosol forward scattering effects on ground-based aerosol optical depth retrievals[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011,112(2):310-319.
[23]
Xia X A, Chen H B, Wang P C. Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in East Asia[J]. Journal of Environmental Sciences, 2004,16(5):832-837.
[24]
Dubovik O, Smirnov A, Holben B N, et al . Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2000,105(D8):9791-9806.
[25]
King M D, Kaufman Y J, Menzel W P, et al . Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992,30(1):2-27.
[26]
Levelt P F, Hilsenrath E, Leppelmeier G W, et al . Science objectives of the ozone monitoring instrument[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(5):1199-1208.
[27]
Livingston J M, Redemann J, Russell P B, et al . Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B[J]. Atmospheric Chemistry and Physics, 2009,9(18):6743-6765.
[28]
Eck T F, Holben B N, Reid J S, et al . Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 1999,104(D24):31333-31349.
[29]
Junge C. The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere[J]. Journal of Meteorology, 1955,12(1):13-25.
[30]
King M D, Byrne D M. A method for inferring total ozone content from the spectral variation of total optical depth obtained with a solar radiometer[J]. Journal of the Atmospheric Sciences, 1976,33(11):2242-2251.
[31]
Armstrong M. Problems with universal kriging[J]. Mathematical Geology, 1984,16(1):101-108.
[32]
Christopher S A, Johnson B, Jones T A, et al . Vertical and spatial distribution of dust from aircraft and satellite measurements during the GERBILS field campaign[J]. Geophysical Research Letters, 2009,36(6):150-164.
[33]
Remer L A, Kaufman Y J, Tanré D, et al . The MODIS aerosol algorithm, products, and validation[J]. Journal of the atmospheric sciences, 2005,62(4):947-973.
[34]
Remer L A, Kleidman R G, Levy R C, et al . Global aerosol climatology from the MODIS satellite sensors[J]. Journal of Geophysical Research: Atmospheres (1984-2012), 2008,113(D14):762-770.