Beven K J, Kirkby M J. A Physically Based, Variable Contributing Area Model of Basin Hydrology[J]. Hydrological Science Bulletin, 1979, 24: 43-69.
[5]
Beven K J, Kirkby M J, Schofield N, et al. Testing a Physically-based Flood Forecasting Model (TOPMODEL) for Three U.K. Catchments[J]. Journal of Hydrology, 1984, 69: 119-143.
[6]
Jenson S K, Domingue J O. Extracting Topographic Structures from Digital Elevation Data for Geographic Information Systems Analysis[J]. Photogrammetric Engineering and Remote Sensing, 1988, 54(11): 1593-1600.
[7]
Rodhe A, Seibert J. Wetland Occurrence in Relation to Topography: A Test of Topographic Indices as Moisture Indicators[J]. Agricultural and Forest Meteorology, 1999(98): 325-340.
[8]
Merot P, Squividant H, Aurousseau P, et al. Testing a Climato-topographic Index for Predicting Wetlands Distribution along an European Climate Gradient[J]. Ecological Modelling, 2003(163): 51-71.
[9]
Curie F, Gaillard S, Ducharne A, et al. Geomorphological Methods to Characterise Wetlands at the Scale of the Seine Watershed[J]. Science of the Total Environment, 2007(375): 59-68.
Hutchinson M F. ANUSPLIN Version 4.3 User Guide . Centre for Resource and Environmental Studies, The Australian National University, Canberra, 2004.
[19]
Hutchinson M F. Interpolation of Rainfall Data with Thin Plate Smoothing Splines, Part I: Two Dimensional Smoothing of Data with Short Range Correlation[J]. Journal of Geographic Information and Decision Analysis, 1998, 2(2): 139-151.
[20]
Hijmans R J, Cameron S E, Parra J L, et al. VeryHigh Resolution Interpolated Climate Surfaces for Global Land Areas[J]. International Journal of Climatology, 2005, 25: 1965-1978.
[21]
ZhangW, Montgomery D R. Digital Elevation Model Grid Size, Landscape Representation, and Hydrological Simulation[J]. Water Resources Research, 1994, 30(4): 1019-1028.
[22]
Fairfield J, Leymarie P. Drainage Networks from Grid Digital Elevation Models[J]. Water Resource Research, 1991, 27: 709-717.
[23]
Quinn P, Beven K J, Planchon O. The Prediction of Hillslope Flow Paths for Distributed Hydrological Modeling Using Digital Terrain Models[J]. Hydrological Processes, 1991, 5: 59-79.
[24]
Costa-Cabral M C, Burges S J. Digital Elevation Model Networks (DEMON): A Model of Flow over Hillslopes for Computation of Contributing and Dispersal Areas[J]. Water Resource Research, 1994, 30: 1681-1692.
[25]
Giuseppe M, Aurella S. Information Content Theory for the Estimation of the Topographic Index Distribution Used in Topmodel[J]. Hydrological Process, 1997, 11: 1099-1114.
[26]
Moore I D. Hydrological and GIS . // Goodchild M F, Steyaery L T, Parks B O, et al. (Eds.). GIS and Environmental Modeling: Progress and Research Issues[J]. Fort Collins, 1995.
[27]
Beven K J. DTM9501 and GRIDA TB: Digital Terrain Analysis: A User's Guide to the Distribution Versions (95.01) . http://www.es. lancs. ac. Uk/hfdg/topmodel.html
[28]
Terbraak C J F. Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis[J]. Ecology, 1986, 67: 1167-1179.
[29]
张金屯. 植被数量生态学方法[M]. 北京: 中国科学技术出版社, 1995.
[30]
Wang Y J, Tao J P, Zhang W Y, et al. Vegetation Restoration Patterns and Their Relationships with Disturbance on the Giant Panda Corridor of Tudiling, Southwest China[J]. Acta Ecologica Sinica, 2006, 26: 3525-3532.