Pavlidis T. A Review of Algorithms for Shape Analysis[J]. Computer Graphics and Image Processing, 1978, 7:243-258.
[3]
Yang L, Albregtsen F. Fast Computation of Invariant Geometric Moments: A New Method Giving Correct Results . Proc 12th IAPR Int. Conf. Pattern Recognition, 1994(1): 201-204.
[4]
Persoon E, Fuk S. Shape Discrimination Using Fourier Descriptors[J]. IEEE Transaction on System, 1977, 7 (3): 170-179.
[5]
Arkin E, Chew P, et al. An Efficiently Computable Metric for Comparing Polygonal Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3): 209-215.
[6]
Atallah M J. A Linear Time Algorit hm for t he Hausdorff Distance between Convex Polygons[J]. Information Processing Letters, 1983, 17:207-209.
Mount D M, Netanyahu N S, Moigne J L. Efficient Algorithms for Robust Point Pat tern Matching and Applications to Image Registration[J]. Pattern Recognition, 1999, 32:17-38.
[9]
Perkins W. A Model-based Vision System for Industrial Parts[J]. IEEE Transaction on Computer, 1978, 27:126-143.
[10]
Constabile M F, Guerra C, et al. Matching Shape: A Case Study in Time-varying Images[J]. Computer Vision Graphics & Image Processing, 1985, 29: 296-310.
[11]
Ballard D H. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. Pattern Recognition, 1981, 13 (2): 111-122.
[12]
Young S S, Scott P D, et al. Object Recognition Using Multilayer Hopfield Neural Network[J]. IEEE Transaction on Image Processing, 1997, 6 (3): 357-372.
[13]
Tan G Z, Gao W, et al. Similarity Measures for Plygons Representation[J]. Chin J CAD & CG, 1995,7 (2): 96-102.
[14]
Frank A U. Qualitative Spatial Reasoning About Distances and Directions in Geographic Space[J]. Journal of Visual Languages and Computing, 1992, 3(4):343-371.
[15]
Chen X Y, Doihara T, Nasu M. Spatial Rela-tions of Distance between Arbitrary Objects in 2D/3D Geographic Spaces Based on the Hausdorff Metric . LIESMARS'95, Wuhan, 1995.