全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

线状空间数据传输的几何相似性度量算法与实验分析

DOI: 10.3724/SP.J.1047.2011.00701, PP. 701-706

Keywords: 几何相似性,分形维数,广义Hausdorff距离

Full-Text   Cite this paper   Add to My Lib

Abstract:

同一地物在不同比例尺或者不同来源的地图上通常存在着相似性,对于图形几何形似性度量方法的研究有利于地图编制、查询、匹配、更新。线状地物要素在地图中占有很大的比例,因此,本文以线状空间目标为例,在前人的基础上给出了线状空间数据的几何图形相似性度量模型(1)以差异距离作为相似性特征的位置相似度;(2)以分形维数作为相似性特征的形状相似度;(3)以长度或者周长作为相似性特征的大小相似度。相对于(3)大小相似度而言,(1)位置相似度、(2)形状相似度综合考虑了几何图形整体统计的方法和局部几何特征结构。完成多尺度传输的线状空间数据几何相似性度量实验,并对数据传输量与几何相似性度量方法进行比较,实验结果表明基于广义Hausdorff距离模型的中位数Hausdorff距离的位置相似性对于空间数据渐进性传输具有稳定性和可行性。最后,总结了本文的研究成果,并展望了该方向进一步研究的若干问题。

References

[1]  唐炉亮,李清泉,杨必胜. 空间数据网络多分辨率传输的几何图形相似性度量[J]. 测绘学报, 2009, 38(4): 336-340.
[2]  Pavlidis T. A Review of Algorithms for Shape Analysis[J]. Computer Graphics and Image Processing, 1978, 7:243-258.
[3]  Yang L, Albregtsen F. Fast Computation of Invariant Geometric Moments: A New Method Giving Correct Results . Proc 12th IAPR Int. Conf. Pattern Recognition, 1994(1): 201-204.
[4]  Persoon E, Fuk S. Shape Discrimination Using Fourier Descriptors[J]. IEEE Transaction on System, 1977, 7 (3): 170-179.
[5]  Arkin E, Chew P, et al. An Efficiently Computable Metric for Comparing Polygonal Shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3): 209-215.
[6]  Atallah M J. A Linear Time Algorit hm for t he Hausdorff Distance between Convex Polygons[J]. Information Processing Letters, 1983, 17:207-209.
[7]  杨春成, 张清浦,等. 顾及几何形状相似性的简单多边形最近距离计算方法[J]. 测绘学报, 2004, 33 (4): 311-318.
[8]  Mount D M, Netanyahu N S, Moigne J L. Efficient Algorithms for Robust Point Pat tern Matching and Applications to Image Registration[J]. Pattern Recognition, 1999, 32:17-38.
[9]  Perkins W. A Model-based Vision System for Industrial Parts[J]. IEEE Transaction on Computer, 1978, 27:126-143.
[10]  Constabile M F, Guerra C, et al. Matching Shape: A Case Study in Time-varying Images[J]. Computer Vision Graphics & Image Processing, 1985, 29: 296-310.
[11]  Ballard D H. Generalizing the Hough Transform to Detect Arbitrary Shapes[J]. Pattern Recognition, 1981, 13 (2): 111-122.
[12]  Young S S, Scott P D, et al. Object Recognition Using Multilayer Hopfield Neural Network[J]. IEEE Transaction on Image Processing, 1997, 6 (3): 357-372.
[13]  Tan G Z, Gao W, et al. Similarity Measures for Plygons Representation[J]. Chin J CAD & CG, 1995,7 (2): 96-102.
[14]  Frank A U. Qualitative Spatial Reasoning About Distances and Directions in Geographic Space[J]. Journal of Visual Languages and Computing, 1992, 3(4):343-371.
[15]  Chen X Y, Doihara T, Nasu M. Spatial Rela-tions of Distance between Arbitrary Objects in 2D/3D Geographic Spaces Based on the Hausdorff Metric . LIESMARS'95, Wuhan, 1995.
[16]  邓敏,钮沭联,李志林. GIS空间目标的广义Hausdorff距离模型[J], 武汉大学学报: 信息科学版, 2007, 7(32): 641-645.
[17]  郝燕玲,唐文静,赵玉新,等. 基于空间相似性的面实体匹配算法研究[J],测绘学报, 2008, 37 (4): 501-505.
[18]  Wentze E A. Shape Analysis in GIS . Proc of AC2SM/ASPRS, 1997,204-213.
[19]  Foley H. A Multiple Criteria Based Approach to Performing Conflation in Geographical Information Systems . New Orleans: Tulane University, 1997.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133