全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球六边形离散格网的矢量线数据绘制精度控制

DOI: 10.3724/SP.J.1047.2015.00804, PP. 804-809

Keywords: 六边形,矢量绘制,多面体投影,全球离散格网,控制精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球离散格网系统是一种新型的地球空间数据模型,是平面格网模型在球面上的扩展。由于六边形的几何结构优势,经常被用于球面离散格网的构建。在平面格网向球面映射过程中,因球面的不可展性,格网上的距离和方向都会发生巨大变化,导致矢量数据球面格网化绘制的精度无法得到保证,这成为矢量数据在全球离散格网显示的一个重要瓶颈,直接制约了球面格网上空间度量关系的建立。本文针对全球六边形离散格网上矢量线数据的绘制问题,研究了平面-球面映射过程,对直线方向影响的统计变化规律,对矢量线数据的格网化表达进行了精度控制,使得平面格网上的矢量绘制方法,能在球面格网上进行高精度的绘制,并保证矢量数据的球面格网绘制误差严格控制在当前层次格网的一个单元内,为格网化数据的高精度显示和格网空间度量的建立奠定了理论基础。

References

[1]  Goodchild M F. Discrete global grids for digital earth[C]. In: International Conference on Discrete Global Grids, California: Santa Barbara, 2000.
[2]  Sahr K. Discrete global grid systems: A new Class of geospatial data structures[D]. Eugene, OR: University of Oregon, 2005.
[3]  Vince A, Zheng X. Arithmetic and Fourier transform for the PYXIS multi-resolution digital Earth model[J], International Journal of Digital Earth, 2009,2(1):59-79.
[4]  Kidd R. NWP discrete global grid systems[R]. Austria: Vienna University of Technology, 2005:3-6.
[5]  Peterson P. Closed-packed uniformly adjacent, multi-resolutional overlapping spatial data ordering[P]. US 8400451 B2, 2011-09-13.
[6]  Zhou M, Chen J, Gong J. A pole-oriented discrete global grid system: Quaternary quadrangle mesh[J]. Computers & Geosciences, 2013,61:133-143.
[7]  Mahdavi A, Harrison E, Samavati F. Hexagonal connectivity maps for digital earth[J]. International Journal of Digital Earth, 2014, doi: 10.1080/17538947.2014,927597.
[8]  Amiri A M, Samavati F, Peterson P. Categorization and conversions for indexing methods of discrete global grid systems[J]. ISPRS International Journal of Geo-Information, 2015,4(1):320-336.
[9]  Middleton L, Sivaswamy J. Hexagonal image processing[M]. London: Springer, 2005.
[10]  Kimerling A J, Sahr K, White D, et al. Comparing geometrical properties of global grids[J]. Cartography and Geographic Information Science, 1999,26(4):271-287.
[11]  David F R. Procedural elements for computer graphics (Second Edition)[M]. New York: The McGraw-Hill Companies Inc, 2002.
[12]  童晓冲.空间信息剖分组织的全球离散格网理论与方法[D].郑州:信息工程大学,2010.
[13]  Tong X C, Ben J, Wang Y, et al. Efficient encoding and spatial operation scheme for aperture 4 hexagonal discrete global grid system[J], International Journal of Geographical Information Science, 2013,27(5):898-921.
[14]  Snyder J P. An equal-area map projection for polyhedral globes[J]. Cartographica, 1992,29(1):10-21.
[15]  张永生,贲进,童晓冲.地球空间信息球面离散网格:理论、算法及应用[M].北京:科学出版社,2007.
[16]  赵学胜,侯妙乐,白建军.全球离散格网的空间数字建模[M].北京:测绘出版社,2007.
[17]  吴忠性,杨启和.数学制图学原理[M].北京:测绘出版社,1989.
[18]  Tong X C, Ben J, Liu Y Y, et al. Modeling and expression of vector data in the hexagonal discrete global grid system[C]. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,Volume XL-4/W2, 2013:15-25.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133