全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

全球六边形离散格网的几何最优化设计与空间度量

DOI: 10.3724/SP.J.1047.2015.00774, PP. 774-782

Keywords: 全球离散格网,空间度量,最优化,六边形

Full-Text   Cite this paper   Add to My Lib

Abstract:

全球离散格网系统(DiscreteGlobalGridSystem,DGGS)是一种新型的空间数据模型。它采用特定的方法进行地球表面的同构离散化,提供了一种无缝无叠的多尺度的全球格网结构。DGGS使用格网的地址编码运算代替传统的坐标计算来处理各种空间操作。本文以六边形DGGS为研究对象,提出了一种用于评价格网几何均匀性的新型最优化目标函数,设计了以启发式全局优化方法为核心,结合数值投影变换方法,构建六边形的DGGS。另外,针对DGGS目前的短板问题——空间度量,研究了DGGS上基于格网方法的面积度量、长度度量和角度度量,旨在发展一套全球六边形离散格网上的空间度量体系。

References

[1]  章毓晋.图像工程(第二版)[M].北京:清华大学出版社,2007.
[2]  Zheng X. Efficient Fourier transforms on hexagonal arrays[D]. Gainesville, FL: University of Florida, 2007.
[3]  Vince A. Indexing the aperture 3 hexagonal discrete global grid[J]. Journal of Visual communication and Image Representation, 2006,17:1227-1236.
[4]  Snyder W E, Qi H R, William S. A coordinate system for hexagonal pixels[EB/OL]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.10.7937&rep=rep1&type=pdf, 1999.
[5]  Varberg D E. Pick's theorem revisited[J]. American Mathematical Monthly, 1985,92:584-587.
[6]  Grunbaum B, Shephard G C. Pick's theorem[J]. American Mathematical Monthly, 1993,100:150-161.
[7]  李凯,童晓冲,贲进,等.平面六边形格网上格点多边形的面积计算方法[J].测绘科学技术学报,2014,31(4):403-407.
[8]  Tong X C, Ben J, Liu Y Y, et al. Modeling and expression of vector data in the hexagonal discrete global grid system[C]. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,Volume XL-4/W2, 2013:15-25.
[9]  叶其孝,沈永欢.实用数学手册(第2版)[M].北京:科学出版社,2007.
[10]  张永生,贲进,童晓冲.地球空间信息球面离散网格:理论、算法及应用[M].北京:科学出版社,2007.
[11]  赵学胜,侯妙乐,白建军.全球离散格网的空间数字建模[M].北京:测绘出版社,2007.
[12]  Goodchild M. Discrete global grids for digital earth[C]. In: International Conference on Discrete Global Grids, California: Santa Barbara, 2000.
[13]  Sahr K, White D, Kimerling A J. Geodesic discrete global grid systems[J]. Cartography and Geographic Information Science, 2003,30(2):121-134.
[14]  Vince A, Zheng X. Arithmetic and Fourier transform for the PYXIS multi-resolution digital earth model[J]. International Journal of Digital Earth, 2009,2(1):59-79.
[15]  Zhou M Y, Chen J, Gong J Y. A pole-oriented discrete global grid system: Quaternary quadrangle mesh[J]. Computers & Geosciences, 2013,61:133-143.
[16]  Tong X C, Ben J, Wang Y, et al. Efficient encoding and spatial operation scheme for aperture 4 hexagonal discrete global grid system[J]. International Journal of Geographical Information Science, 2013,27(5):898-921.
[17]  Mahdavi A, Harrison E, Samavati F. Hexagonal connectivity maps for digital earth[J]. International Journal of Digital Earth, 2014, doi:10.1080/17538947:927597.
[18]  Snyder P. An equal-area map projection for polyhedral globes[J]. Cartographica, 1992,29(1):10-21.
[19]  Dutton G. A hierarchical coordinate system for geoprocessing and cartography[M]. Berlin: Springer-Verlag, 1999.
[20]  Gregory M J, Kimerling J A, White D, et al. A comparison of intercell metrics on discrete global grid systems[J]. Computers, Environment and Urban Systems, 2008,32(3):188-203.
[21]  童晓冲,贲进,张永生.不同集合的球面矢量Voronoi图生成算法[J].测绘学报,2006,35(1):83-89.
[22]  YangQ, Snyder P, Tobler W. Map projection transformation: Principles and applications[M]. London: Taylor & Francis, 2000.
[23]  童晓冲.空间信息剖分组织的全球离散格网理论与方法[D].郑州:信息工程大学,2010.
[24]  童晓冲,贲进,汪滢.利用数值投影变换构建全球六边形离散格网[J].测绘学报,2013,42(2):268-276.
[25]  高俊.网格与测绘[J].军事测绘,2005(1):5-9.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133