全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

以光谱信息熵改进的N-FINDR高光谱端元提取算法

DOI: 10.3724/SP.J.1047.2015.00979, PP. 979-985

Keywords: 高光谱影像,光谱信息熵,N-FINDR,混合像元,端元提取

Full-Text   Cite this paper   Add to My Lib

Abstract:

端元提取是高光谱混合像元分解的关键步骤,也是高光谱影像分析的重要前提。N-FINDR算法是一种经典且有效的端元提取算法,但其需遍历所有可能的像元组合,计算量巨大,时间效率不高。本文以光谱信息熵和凸面几何学理论,利用高光谱影像像元,在光谱特征空间形成的单形体顶点附近为相对纯净像元,单形体内部为混合像元的特性,提出了一种结合光谱信息熵的N-FINDR改进算法。该方法根据各波段像元灰度概率计算影像中每个像元的光谱信息熵,将大于光谱信息熵阈值的像元作为混合像元被剔除,在保留的像元组成的单形体上搜索最大体积,并提取最大体积顶点处像元作为端元。最后,使用美国EO-1卫星获取的江西省德兴某铜矿的Hyperion数据,对改进后的算法进行验证。结果表明,改进后的N-FINDR算法在确保较高端元提取精度的同时,大大提高了数据处理的时间效率。

References

[1]  Winter M E. N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data[C]. International Society for Optical Engineering, International Symposium on Optical Science, Engineering, and Instrumentation. Denver, USA, 1999,3753:266-275.
[2]  Boardman J W, Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data[C]. Fifth JPL Airborne Earth Science Workshop, Pasadena, USA, 1995:23-26.
[3]  Neville R A, Staenz K, Szeredi T. Automatic endmembers extraction from hyperspectral data for mineral exploration[C]. 21st Canadian Symposium on Remote Sensing, Ottawa, Canada, 1999:21-24.
[4]  Chang C I, Wu C C, Liu W M, et al . A new growing method for simplex-based endmember extraction algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006,44(10):2804-2819.
[5]  Nascimento J M P, Dias J M B. Vertex component analysis: A fast algorithm to unmix hyperspectral data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005,43(4):898-910.
[6]  郝虑远,孙睿,谢东辉,等.基于改进N-FINDR算法的华北平原冬小麦面积提取[J].农业工程学报,2013,29(15):153-161.
[7]  唐晓燕,高昆,倪国强,等.基于流形学习和空间信息的改进N-FINDR端元提取算法[J].光谱学与光谱分析,2013,33(9):2519-2524.
[8]  Shannon C E. A mathematical theory of communication[J]. The Bell System Technical Journal, 1948,27:379-423, 623-656.
[9]  杨可明,刘士文,王林伟,等.光谱最小信息熵的高光谱影像端元提取算法[J].光谱学与光谱分析,2014,34(8):2229-2233.
[10]  Junmin Liu, Jiangshe Zhang. A New Maximum Simplex Volume Method Based on Householder Transformation for Endmember Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50(1):104-118.
[11]  赵春晖,齐滨,王玉磊.一种改进的N-FINDR高光谱端元提取算法[J].电子与信息学报,2012,34(2):499-503.
[12]  李二森,朱述龙,周晓明,等.高光谱图像端元提取算法研究进展与比较[J].遥感学报,2011,15(4):659-679.
[13]  路漫漫.融合PSO的N-FINDR改进端元提取算法研究[D].大连:大连海事大学,2014.
[14]  张兵,高连如.高光谱图像分类与目标探测[M].北京:科学出版社,2011:102-104.
[15]  齐滨.高光谱图像分类及端元提取方法研究[D].哈尔滨:哈尔滨工程大学,2012.
[16]  Winter M E. A proof of the N-FINDR algorithm for the automated detection of endmembers in a hyperspectral image[C]. Defense and Security, International Society for Optics and Photonics, 2004:31-41.
[17]  朱述龙,齐建成,朱宝山,等.以凸面单体边界为搜索空间的端元快速提取算法[J].遥感学报,2010,14(3):482-292.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133