Alvim A C F, Taillard E D. POPMUSIC for the point feature label placement problem[J]. European Journal of Operational Research, 2009,192(2):396-413.
[3]
Marks J, Shieber S M. The computational complexity of cartographic label placement[M]. Cambridge, MA: Harvard University, Center for Research in Computing Technology, Aiken Computation Laboratory, 1991.
[4]
Rabello R L, Mauri G R, Ribeiro G M, et al . A clustering search metaheuristic for the point-feature cartographic label placement problem[J]. European Journal of Operational Research,2014,234:802-808.
[5]
杜维.基于模拟退火算法的地图点状要素注记配置研究[D].武汉:武汉大学,2005.
[6]
Chen Y, Wang Z, Liu X. Automated point feature label placement using backtracking algorithm with an adjacent graph[C]. IEEE 18th International Conference on Geoinformatics, 2010:1-5.
Chen C, Zhang L, Ma J, et al . Adaptive multi-resolution labeling in virtual landscapes[J]. International Journal of Geographical Information Science, 2010,24(6):949-964.
Ribeiro G M, Lorena L A N. Lagrangean relaxation with clusters for point-feature cartographic label placement problems[J]. Computers & Operations Research, 2008,35(7):2129-2140.
[12]
Mauri G R, Ribeiro G M, Lorena L A N. A new mathematical model and a Lagrangean decomposition for the point-feature cartographic label placement problem[J]. Computers & Operations Research, 2010,37(12):2164-2172.
Ester M, Kriegel H P, Sander J, et al . A density-based algorithm for discovering clusters in large spatial databases with noise[C]. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, 1996,96(34):226-231.
[15]
Colorni A, Dorigo M , Maniezzo V, et al . Distributed Optimization by ant colonies[C]. In: Proceedings of European Conference On Artificial Life, Paris, 1991:134-142.
[16]
Dorigo M, Birattari M. Ant colony optimization[M]. Springer US, 2010:36-39.
Fan H, Zhang Z X, Du D S. Quality evaluation model for map labeling[J]. Geo-spatial Information Science, 2005,8(1):72-78.
[21]
孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48-61.
[22]
Viswanath P, Babu V S. Rough-DBSCAN: A fast hybrid density based clustering method for large data sets[J]. Pattern Recognition Letters, 2009,30(16):1477-1488.