全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

CO2深部盐水层地质封存成本研究

DOI: 10.3981/j.issn.1000-7857.2014.006, PP. 46-52

Keywords: 二氧化碳,深部盐水层,地质封存成本分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

为进一步完善CCS经济可行性研究以及封存场地优选,从全生命周期的角度建立了深部盐水层(DSF)封存成本的工程经济模型。该模型在前人研究成果基础上,将注入前场地检查成本、注入后监测及设备处置成本纳入考虑范围。以典型DSF封存场地为例,计算得出CO2均化封存成本为4.89$/t,其中注入成本占80.43%,监测成本、场地勘察及检查成本分别占10.46%和9.12%。在此基础上,探讨了年注入量、储层渗透率、储层压力、储层孔隙度、储层厚度及储层深度6个因素变动对均化封存成本的影响,总结了其变化规律,并从注入井数量和封存场地面积两个方面进行了解释。通过敏感性分析得出,储层深度和储层压力对均化封存成本的影响最大,储层厚度和储层孔隙度次之。

References

[1]  Hansson A, Bryngelsson M. Expert opinions on carbon dioxide capture and storage: A framing of uncertainties and possibilities [J]. Energy Policy, 2009, 37(6): 2273-2282.
[2]  Working Group III of the Intergovernmental Panel on Climate Change. IPCC special report on carbon dioxide capture and storage[R]. Cambridge: Cambridge University Press, 2005.
[3]  王众, 张哨楠, 匡建超. 碳捕捉与封存技术国内外研究现状评述及发展 趋势[J]. 能源技术经济, 2011, 23(5): 42-47. Wang Zhong, Zhang Shaonan, Kuang Jianchao. Review on status quo and research trend of carbon dioxide capture and storage technology in China and the world [J]. Energy Technology and Economics, 2011, 23(5): 42-47.
[4]  McCoy S T, Rubin E S. The effect of high oil price on EOR project economics[J]. Energy Procedia, 2009, 1(1): 4143-4150.
[5]  匡建超, 王众, 霍志磊. 中国二氧化碳捕捉与封存技术(CCS)早期实施 方案构建研究[J]. 中外能源, 2012,17(12): 17-23. Kuang Jianchao, Wang Zhong, Huo Zhilei. A study into devising CCS implementation schemes for early stage of deployment in China[J]. Sino-Global Energy, 2012, 17(12): 17-23.
[6]  李义曼,庞忠,李捷, 等. 二氧化碳咸水层封存和利用[J]. 科技导报, 2012, 30(19): 70-79. Li Yiman, Pang Zhonghe, Li Jie, et al. CO2 sequestration and utilization in deep saline aquifers [J].Science & Technology Review, 2012, 30(19): 70-79.
[7]  Heddle G, Herzog H, Klett M. The economics of CO2 storage[R]. Massachusetts: Massachusetts Institute of Technology, 2003.
[8]  McCollum D L, Ogden J M. Techno-economic models for carbon dioxide compression, transport, and storage & correlations for estimating carbon dioxide density and viscosity[R]. California: Institute of Transportation Studies, 2006.
[9]  McCoy S T. The economics of CO2 transport by pipeline and storage in saline aquifer and oil reservoir[D]. Pennsylvania: Carnegie Mellon University, 2008.
[10]  Giesea R, Henningesa J, Lütha S, et al. Monitoring at the CO2 SINK site: A concept integrating geophysics, geochemistry and microbiology [J]. Energy Procedia, 2009, 1(1): 2251-2259.
[11]  Damen K, Faaij A, Turkenburg W. Health, safety and environmental risks of underground CO2 storage-overview of mechanisms and current knowledge [J]. Climatic Change, 2006, 74(1-3): 289-318.
[12]  United State Environment Protection Agency. Geologic CO2 sequestration technology and cost analysis[R]. Washington D C: United State Environment Protection Agency, 2008.
[13]  沈平平, 廖新维. 二氧化碳地质埋存与提高石油采收率技术[M]. 北 京:石油工业出版社, 2009. Shen Pingping, Liao Xinwei. The technology of carbon dioxide stored in geological media and enhanced oil recovery [M]. Beijing: Petroleum Industry Press, 2009.
[14]  Law D, Bachu S. Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin[J]. Energy Conversion and Management, 1996, 37(6-8): 1167-1174.
[15]  McCoy S T, Rubin E S. An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage[J]. International Journal of Greenhouse Gas Control, 2008, 2(2): 219-229.
[16]  Massachusetts Institute of Technology. The future of coal: options for a carbon-constrained world[R]. Massachusetts: Massachusetts Institute of Technology, 2007.
[17]  U S. Department of Labor, Bureau of Labor Statistics. Consumer Price Index[EB/OL]. (2013-09-17) [2013-09-28]. ftp://ftp.bls.gov/PUB/ special.requests/CPI/cpiai.txt.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133