Behrman A L, Harkema S J. Locomotor training after human spinal cord injury: A series of case studies[J]. Physical Therapy, 2000, 80(7): 688-700.
[3]
Van den Brand R, Heutschi J, Barraud Q, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury [J]. Science, 2012, 336 (6085): 1182-1185.
Fick B R, Makinson J B. Hardiman I prototype for machine augmentation of human strength and endurance: Final report[R/OL]. [2015-03-31]. http://www. dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0739735.
[6]
Lee S, Sankai Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint[C]//Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on. IEEE, 2002, 2: 1499-1504.
[7]
Suzuki K, Mito G, Kawamoto H, et al. Intention-based walking support for paraplegia patients with Robot Suit HAL[J]. Advanced Robotics, 2007, 21(12): 1441-1469.
[8]
Chu A, Kazerooni H, Zoss A. On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX)[C]//Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005: 4345-4352.
Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation[J]. European Journal of Mechanical and Environmental Engineering, 2002, 47(1): 11-21.
[11]
Marcincin J, Palko A. Negative pressure artificial muscle-An unconventional drive of robotic and handling systems[J]. Translations-Ve Riecansky, 1994: 350-354.
[12]
Tondu B. Modelling of the McKibben artificial muscle: A review[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(3): 225-253.
[13]
Chou C P, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles [J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102.
[14]
Daerden F. Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements [D]. Belgium: Vrije Universiteit Brussel, 1999.
[15]
Daerden F, Lefeber D. The concept and design of pleated pneumatic artificial muscles[J]. International Journal of Fluid Power, 2001, 2(3): 41-50.
[16]
Yarlott J. Fluid actuator: US Patent 3645173 [P]. 1972-02-29 .
[17]
Immega G, Kukolj M. Axially contractible actuator: US Patent 4939982 [P]. 1993-01-26
[18]
Kukolj M. Axially contractible actuator: US Patent 4733603[P]. 1988-03-29.
[19]
Nickel V L, Perry J, Garrett A L. Development of useful function in the severely paralyzed hand [J]. The Journal of Bone & Joint Surgery, 1963, 45(5): 933-952.
[20]
Cianchetti M, Ranzani T, Gerboni G, et al. STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module[C]//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013: 3576-3581.
[21]
Song Y S, Sun Y, Van Den Brand R, et al. Soft robot for gait rehabilitation of spinalized rodents[C]//Intelligent Robots and Systems (IROS), 2013 IEEE/ RSJ International Conference on. IEEE, 2013: 971-976.
[22]
Costa N, Bezdicek M, Brown M, et al. Joint motion control of a powered lower limb orthosis for rehabilitation [J]. International Journal of Automation and Computing, 2006, 3(3): 271-281.
[23]
Wehner M, Quinlivan B, Aubin P M, et al. A lightweight soft exosuit for gait assistance[C]//Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013: 3362-3369.
[24]
Walker R. Design of a Dextrous Hand for advanced CLAWAR applications[J]. Climbing and Walking Robots and the Supporting Technologies for Mobile Machines: CLAWAR, 2003: 691-698.
[25]
Wallmersperger T, Kr?plin B, Gülch R W. Electroactive polymer (EAP) actuators as artificial muscles-reality, potential, and challenges[M]. Bellingham WA: SPIE Press, 2004: 335-362.
Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles[J]. Materials Today, 2007, 10(4): 30-38.
[28]
Bar-Cohen Y. Electroactive polymers as an enabling materials technology[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(4): 553-564.
[29]
Bar- Cohen Y. Electro- active polymers: current capabilities and challenges[C]//Proceedings of SPIE, the International Society for Optical EngineeringProceedings of SPIE, the International Society for Optical Engineering. 2002, 4695: 1-7.
[30]
Ebron V H, Yang Z, Seyer D J, et al. Fuel-powered artificial muscles[J]. Science, 2006, 311(5767): 1580-1583.
[31]
Haines C S, Lima M D, Li N, et al. Artificial muscles from fishing line and sewing thread[J]. Science, 2014, 343(6173): 868-872.
[32]
Johnson D C, Repperger D W, Thompson G. Development of a mobility assist for the paralyzed, amputee, and spastic patient[C]//Biomedical Engineering Conference, 1996., Proceedings of the 1996 Fifteenth Southern. IEEE, 1996: 67-70.
Kawamoto H, Sankai Y. EMG-based hybrid assistive leg for walking aid using feedforward controller[J]. ICCAS 2001, 2001: 190-193.
[35]
Ortiz-Catalan M, H?kansson B, Br?nemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs[J]. Science Translational Medicine, 2014, 6(257): 257re6.
Deng Y G, Liu J. Flexible mechanical joint as human exoskeleton using low-melting-point alloy [J]. ASME Journal of Medical Devices, 2014, 8: 044506.
[38]
Wang Q, Yang Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing [J]. Advanced Materials, DOI: 10.1002/adma.201502200, 2015.
Pfurtscheller G, Müller G R, Pfurtscheller J, et al.‘Thought'– control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia[J]. Neuroscience Letters, 2003, 351(1): 33-36.
[41]
Velliste M, Perel S, Spalding M C, et al. Cortical control of a prosthetic arm for self-feeding[J]. Nature, 2008, 453(7198): 1098-1101.
[42]
Webb J, Xiao Z G, Aschenbrenner K P, et al. Towards a portable assistive arm exoskeleton for stroke patient rehabilitation controlled through a brain computer interface[C]//Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on. IEEE, 2012: 1299-1304.
[43]
Racine J L C, Kazerooni H. Control of a lower extremity exoskeleton for human performance amplification[D]. Berkeley: University of California, 2003.
[44]
Steger R, Kim S H, Kazerooni H. Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX)[C]//Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006: 3469-3476.
[45]
Mengü? Y, Park Y L, Pei H, et al. Wearable soft sensing suit for human gait measurement[J]. International Journal of Robotics Research, 2014, 33(14): 1748-1764.
[46]
Tan D W, Schiefer M A, Keith M W, et al. A neural interface provides long-term stable natural touch perception[J]. Science Translational Medicine, 2014, 6(257): 257ra138.
[47]
Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies [J]. Advanced Materials, 2014, 26(34): 6036-6042.
[48]
Zhang J, Sheng L, Liu J. Synthetically chemical- electrical mechanism for controlling large scale reversible deformation of liquid metal objects[J]. Scientific Reports, 2014, 4: 7116.
[49]
Guo C R, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and predesigned mask[J]. Journal of Materials Chemistry B, 2014, 2(35): 5739-5745.
[50]
Liu Y, Gao M, Mei S F, Han Y T, Liu J. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators[J]. Applied Physics Letters, 2013, 102: 064101.