全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

可穿戴机器人研究进展:材料学角度

, PP. 81-91

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着机器人技术的迅猛发展,可穿戴机器人作为一种可将人类智力与机械系统有机结合的智能设备,成为机器人领域新的研究热点。可穿戴机器人涉及机械、电子、生物等多学科领域知识,在人体功能增强、残疾人运动辅助、工业生产和军事侦察等方面有着广阔的应用前景。随着新材料的不断涌现以及控制算法的完善,可穿戴机器人的性能也在不断改进,并在生物医学及其他领域发挥着越来越重要的作用。本文从材料学革新角度出发,通过对现有可穿戴机器人的驱动方式和人机交互系统进行分类,从这两方面介绍可穿戴机器人的研究进展,剖析其中的机器和材料的工作与控制机制,并对其未来的应用前景做出展望。

References

[1]  许琳, 张艳妮. 我国残疾人社会保障的现状与问题研究[J]. 西北大学学报: 哲学社会科学版, 2007, 37(6): 80-84.
[2]  Behrman A L, Harkema S J. Locomotor training after human spinal cord injury: A series of case studies[J]. Physical Therapy, 2000, 80(7): 688-700.
[3]  Van den Brand R, Heutschi J, Barraud Q, et al. Restoring voluntary control of locomotion after paralyzing spinal cord injury [J]. Science, 2012, 336 (6085): 1182-1185.
[4]  杨智勇, 张静, 归丽华, 等. 外骨骼机器人控制方法综述[J]. 海军航空工程学院学报, 2009, 24(5): 520-526.
[5]  Fick B R, Makinson J B. Hardiman I prototype for machine augmentation of human strength and endurance: Final report[R/OL]. [2015-03-31]. http://www. dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=AD0739735.
[6]  Lee S, Sankai Y. Power assist control for walking aid with HAL-3 based on EMG and impedance adjustment around knee joint[C]//Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on. IEEE, 2002, 2: 1499-1504.
[7]  Suzuki K, Mito G, Kawamoto H, et al. Intention-based walking support for paraplegia patients with Robot Suit HAL[J]. Advanced Robotics, 2007, 21(12): 1441-1469.
[8]  Chu A, Kazerooni H, Zoss A. On the biomimetic design of the berkeley lower extremity exoskeleton (BLEEX)[C]//Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005: 4345-4352.
[9]  陶国良, 谢建蔚, 周洪. 气动人工肌肉的发展趋势与研究现状[J]. 机械工程学报, 2009, 45(10): 75-83.
[10]  Daerden F, Lefeber D. Pneumatic artificial muscles: actuators for robotics and automation[J]. European Journal of Mechanical and Environmental Engineering, 2002, 47(1): 11-21.
[11]  Marcincin J, Palko A. Negative pressure artificial muscle-An unconventional drive of robotic and handling systems[J]. Translations-Ve Riecansky, 1994: 350-354.
[12]  Tondu B. Modelling of the McKibben artificial muscle: A review[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(3): 225-253.
[13]  Chou C P, Hannaford B. Measurement and modeling of McKibben pneumatic artificial muscles [J]. IEEE Transactions on Robotics and Automation, 1996, 12(1): 90-102.
[14]  Daerden F. Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements [D]. Belgium: Vrije Universiteit Brussel, 1999.
[15]  Daerden F, Lefeber D. The concept and design of pleated pneumatic artificial muscles[J]. International Journal of Fluid Power, 2001, 2(3): 41-50.
[16]  Yarlott J. Fluid actuator: US Patent 3645173 [P]. 1972-02-29 .
[17]  Immega G, Kukolj M. Axially contractible actuator: US Patent 4939982 [P]. 1993-01-26
[18]  Kukolj M. Axially contractible actuator: US Patent 4733603[P]. 1988-03-29.
[19]  Nickel V L, Perry J, Garrett A L. Development of useful function in the severely paralyzed hand [J]. The Journal of Bone & Joint Surgery, 1963, 45(5): 933-952.
[20]  Cianchetti M, Ranzani T, Gerboni G, et al. STIFF-FLOP surgical manipulator: mechanical design and experimental characterization of the single module[C]//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013: 3576-3581.
[21]  Song Y S, Sun Y, Van Den Brand R, et al. Soft robot for gait rehabilitation of spinalized rodents[C]//Intelligent Robots and Systems (IROS), 2013 IEEE/ RSJ International Conference on. IEEE, 2013: 971-976.
[22]  Costa N, Bezdicek M, Brown M, et al. Joint motion control of a powered lower limb orthosis for rehabilitation [J]. International Journal of Automation and Computing, 2006, 3(3): 271-281.
[23]  Wehner M, Quinlivan B, Aubin P M, et al. A lightweight soft exosuit for gait assistance[C]//Robotics and Automation (ICRA), 2013 IEEE International Conference on. IEEE, 2013: 3362-3369.
[24]  Walker R. Design of a Dextrous Hand for advanced CLAWAR applications[J]. Climbing and Walking Robots and the Supporting Technologies for Mobile Machines: CLAWAR, 2003: 691-698.
[25]  Wallmersperger T, Kr?plin B, Gülch R W. Electroactive polymer (EAP) actuators as artificial muscles-reality, potential, and challenges[M]. Bellingham WA: SPIE Press, 2004: 335-362.
[26]  李晓锋, 梁松苗, 李艳芳, 等. 仿生材料电活性聚合物"人工肌肉”的研究进展[J]. 高分子通报, 2008(8): 134-145.
[27]  Mirfakhrai T, Madden J D W, Baughman R H. Polymer artificial muscles[J]. Materials Today, 2007, 10(4): 30-38.
[28]  Bar-Cohen Y. Electroactive polymers as an enabling materials technology[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2007, 221(4): 553-564.
[29]  Bar- Cohen Y. Electro- active polymers: current capabilities and challenges[C]//Proceedings of SPIE, the International Society for Optical EngineeringProceedings of SPIE, the International Society for Optical Engineering. 2002, 4695: 1-7.
[30]  Ebron V H, Yang Z, Seyer D J, et al. Fuel-powered artificial muscles[J]. Science, 2006, 311(5767): 1580-1583.
[31]  Haines C S, Lima M D, Li N, et al. Artificial muscles from fishing line and sewing thread[J]. Science, 2014, 343(6173): 868-872.
[32]  Johnson D C, Repperger D W, Thompson G. Development of a mobility assist for the paralyzed, amputee, and spastic patient[C]//Biomedical Engineering Conference, 1996., Proceedings of the 1996 Fifteenth Southern. IEEE, 1996: 67-70.
[33]  归丽华, 杨智勇, 顾文锦, 等. 能量辅助骨骼服NAEIES的开发[J]. 海军航空工程学院学报, 2007, 22(4): 467-470.
[34]  Kawamoto H, Sankai Y. EMG-based hybrid assistive leg for walking aid using feedforward controller[J]. ICCAS 2001, 2001: 190-193.
[35]  Ortiz-Catalan M, H?kansson B, Br?nemark R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs[J]. Science Translational Medicine, 2014, 6(257): 257re6.
[36]  任宇鹏, 王广志, 程明, 等. 基于脑-机接口的康复辅助机械手控制[J]. 中国康复医学杂志, 2004, 19(5): 330-333.
[37]  Deng Y G, Liu J. Flexible mechanical joint as human exoskeleton using low-melting-point alloy [J]. ASME Journal of Medical Devices, 2014, 8: 044506.
[38]  Wang Q, Yang Y, Yang J, Liu J. Fast fabrication of flexible functional circuits based on liquid metal dual-trans printing [J]. Advanced Materials, DOI: 10.1002/adma.201502200, 2015.
[39]  王伟. 可穿戴机器人的研究现状和面临的挑战[J]. 机器人技术与应用, 2013(4): 12-16.
[40]  Pfurtscheller G, Müller G R, Pfurtscheller J, et al.‘Thought'– control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia[J]. Neuroscience Letters, 2003, 351(1): 33-36.
[41]  Velliste M, Perel S, Spalding M C, et al. Cortical control of a prosthetic arm for self-feeding[J]. Nature, 2008, 453(7198): 1098-1101.
[42]  Webb J, Xiao Z G, Aschenbrenner K P, et al. Towards a portable assistive arm exoskeleton for stroke patient rehabilitation controlled through a brain computer interface[C]//Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on. IEEE, 2012: 1299-1304.
[43]  Racine J L C, Kazerooni H. Control of a lower extremity exoskeleton for human performance amplification[D]. Berkeley: University of California, 2003.
[44]  Steger R, Kim S H, Kazerooni H. Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX)[C]//Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on. IEEE, 2006: 3469-3476.
[45]  Mengü? Y, Park Y L, Pei H, et al. Wearable soft sensing suit for human gait measurement[J]. International Journal of Robotics Research, 2014, 33(14): 1748-1764.
[46]  Tan D W, Schiefer M A, Keith M W, et al. A neural interface provides long-term stable natural touch perception[J]. Science Translational Medicine, 2014, 6(257): 257ra138.
[47]  Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies [J]. Advanced Materials, 2014, 26(34): 6036-6042.
[48]  Zhang J, Sheng L, Liu J. Synthetically chemical- electrical mechanism for controlling large scale reversible deformation of liquid metal objects[J]. Scientific Reports, 2014, 4: 7116.
[49]  Guo C R, Yu Y, Liu J. Rapidly patterning conductive components on skin substrates as physiological testing devices via liquid metal spraying and predesigned mask[J]. Journal of Materials Chemistry B, 2014, 2(35): 5739-5745.
[50]  Liu Y, Gao M, Mei S F, Han Y T, Liu J. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators[J]. Applied Physics Letters, 2013, 102: 064101.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133