全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

青蒿素的生物合成研究

, PP. 31-35

Keywords: 青蒿,萜类,青蒿素,代谢

Full-Text   Cite this paper   Add to My Lib

Abstract:

自20世纪70年代中国科学家从传统药用植物黄花蒿中分离出青蒿素以来,其作为最有效的抗疟药物受到全世界高度关注。随着分子生物学研究手段的发展,青蒿素生物合成途径逐步得到阐明,大多数代谢步骤的酶基因和部分调控机制得到鉴定。与此同时,利用转基因技术促进黄花蒿中青蒿素的合成与积累,以及在微生物中重建代谢通路以实现青蒿素的半合成的研究工作也取得了突破性进展。本文介绍在青蒿素代谢研究领域的主要进展。

References

[1]  青蒿结构研究协作组. 一种新型的倍半萜内酯——青蒿素[J]. 科学通 报,1977, 22(3): 142.
[2]  刘静明, 倪慕云, 樊菊芬, 等. 青蒿素(Arteannuin)的结构和反应[J]. 化 学学报, 1979, 37(2): 129-143.
[3]  林有润. 中国蒿属志——中国蒿属植物的系统分类、分布和主要经济 用途[J]. 植物研究, 1988, 8: 1-61.
[4]  Tellez M R, Canel C, Rimando A M, et al. Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L.[J]. Phytochem-istry, 1999, 52: 1035-1040.
[5]  Jia J W, Crock J, Lu S, et al. (3R)-Linalool synthase from Artemisia an-nua L.: cDNA isolation, characterization, and wound induction[J]. Archives of Biochemistry and Biophysics, 1999, 372: 143-149.
[6]  Cai Y, Jia J W, Crock J, et al. A cDNA clone for β-Caryophyllene syn-thase from Artemisia annua L.[J]. Phytochemistry, 2002, 61: 523-529.
[7]  Teoh K H, Polichuk D R, Reed D W, et al. Molecular cloning of an al-dehyde dehydrogenase implicated in artemisinin biosynthesis in Arte-misia annua[J]. Botany, 2009, 87: 635-642.
[8]  Lu X, Jiang W, Zhang L, et al. Characterization of a novel ERF tran-scription factor in Artemisia annua and its induction kinetics after hor-mones and stress treatments[J]. Molecular Biology Reports, 2012, 39: 9521-9527.
[9]  刘本叶, 叶和春, 李国凤, 等. 青蒿发根生长及青蒿素生物合成动态 的研究[J]. 生物工程学报, 1998, 14: 401-404.
[10]  Wyslouzil B E, Waterbury R G, Weathers P J. The growth of single roots of Artemisia annua in nutrient mist reactors[J]. Biotechnology and Bioengineering, 2000, 70: 143-150.
[11]  Arsenault P R, Vail D R, Wobbe K K, et al. Effect of sugars on arte-misinin production in Artemisia annua L.: Transcription and metabo-lite measurements[J]. Molecules, 2010, 15: 2302-2318.
[12]  Weathers P J, Arsenault P R, Covello P S, et al. Artemisinin produc-tion in Artemisia annua: Studies in planta and results of a novel deliv-ery method for treating malaria and other neglected diseases[J]. Phyto-chem Reviews, 2011, 10: 173-183.
[13]  Nguyen K T, Towler M J, Weathers P J. The effect of roots and media constituents on trichomes and artemisinin production in Artemisia an-nua L.[J]. Plant Cell Reports, 2013, 32: 207-218.
[14]  Vergauwe A, Cammaert R, Vandenberghe D, et al. Agrobacterium tu-mefaciens-mediated transformation of Artemisia annua L. and regener-ation of transgenic plants[J]. Plant Cell Reports, 1996, 15: 929-933.
[15]  景福远, 张凌, 李美芽, 等. 过量表达cyp71av1和cpr基因提高青蒿中 青蒿素的含量[J]. 中国农业科技导报, 2008, 10: 64-70.
[16]  Martin V J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Bio-technology, 2003, 21: 796-802.
[17]  Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalari-al drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440: 940-943.
[18]  Lindahl A L, Olsson M E, Mercke P, et al. Production of the artemis-inin precursor amorpha-4,11-diene by engineered Saccharomyces cere-visiae[J]. Biotechnology Letters, 2006, 28: 571-580.
[19]  Paddon C J, Keasling J D. Semi-synthetic artemisinin: A model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12: 355-367.
[20]  Li J X, Fang X, Zhao Q, et al. Rational engineering Plasticity residues of sesquiterpene synthases from Artemisia annua: Product specificity and catalytic efficiency[J]. Biochemical Journal, 2013, 451(3): 417-426.
[21]  Lu S, Xu R, Jia J W, et al. Cloning and functional characterization of a β-pinene synthase from Artemisia annua L. that shows a circadian pat-tern of expression[J]. Plant Physiology, 2002, 130: 477-486.
[22]  Matsushita Y, Kang W, Charlwood B V. Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua[J]. Gene, 1996, 172: 207-209.
[23]  Chang Y J, Song S H, Park S H, et al. Amorpha-4,11-diene synthase of Artemisia annua: cDNA isolation and bacterial expression of a ter-pene synthase involved in artemisinin biosynthesis[J]. Archives of Bio-chemistry and Biophysics, 2000, 383: 178-184.
[24]  Mercke P, Bengtsson M, Bouwmeester H J, et al. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L.[J]. Ar-chives of Biochemistry and Biophysics, 2000, 381: 173-180.
[25]  Teoh K H, Polichuk D R, Reed D W, et al. Artemisia annua L. (As-teraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiter-pene lactone artemisinin[J]. FEBS Letters, 2006, 580: 1411-1416.
[26]  Paddon C J, Westfall P J, Pitera D J, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496: 528-532.
[27]  Bharel S, Gulati A, Abdin M Z, et al. Enzymatic synthesis of artemis-inin from natural and synthetic precursors[J]. Journal of Natural Prod-ucts, 1998, 61, 633-636.
[28]  Zhang Y, Teoh K H, Reed D W, et al. The molecular cloning of arte-misinic aldehyde D11(13) reductase and its role in glandular tri-chome-dependent biosynthesis of artemisinin in Artemisia annua[J]. Jouranl of Biological Chemistry, 2008, 283: 21501-21508.
[29]  Bertea C M, Voster A, Verstappen F W, et al. Isoprenoid biosynthesis in Artemisia annua: Cloning and heterologous expression of a germacrene A synthase from a glandular trichome cDNA library[J]. Archives of Biochemistry and Biophysics, 2006, 448: 3-12.
[30]  Kim S H, Chang Y J, Kim S U. Tissue specificity and developmental pattern of amorpha-4,11-diene synthase (ADS) proved by ADS pro-moter-driven GUS expression in the heterologous plant, Arabidopsis thaliana[J]. Planta Medica, 2008, 74: 188-193.
[31]  Wang H, Han J, Kanagarajan S, et al. Trichome-specific expression of the amorpha-4,11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion[J]. Plant Molecular Biology, 2013, 81: 119-138.
[32]  Olsson M E, Olofsson L M, Lindahl A L, et al. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L.[J]. Phytochemistry, 2009, 70: 1123-1128.
[33]  Ji Y, Xiao J, Shen Y, et al. Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin bio-synthesis in Artemisia annua[J]. Plant and Cell Physiology 2014, 55: 1592-1604.
[34]  Lu X, Zhang L, Zhang F, et al. AaORA, a trichome-specific AP2/ ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea[J]. New Phytologist, 2013, 198: 1191-1202.
[35]  Ma D, Pu G, Lei C, et al. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosyn-thesis[J]. Plant and Cell Physiology, 2009, 50: 2146-2161.
[36]  Yu Z X, Li J X, Yang C Q, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemis-inin biosynthesis in Artemisia annua L.[J] Molecular Plant, 2012, 5: 353-365.
[37]  Zhang F, Fu X, Lü Z, et al. A basic leucine zipper transcription fac-tor, AabZIP1, connects abscisic acid signaling with artemisinin biosyn-thesis in Artemisia annua[J]. Molecular Plant, 2015, 8: 163-175.
[38]  Pandey N, Pandey-Rai S. Short term UV-B radiation-mediated tran-scriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L.[J]. Plant Cell Tissue and Organ Culture, 2014, 116: 371-385.
[39]  Pandey N, Pandey-Rai S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 ex-pression in Artemisia annua L.[J]. Planta, 2015, 242: 869-879.
[40]  Hong G J, Hu W L, Li J X, et al. Increased accumulation of artemis-inin and anthocyanins in Artemisia annua expressing the arabidopsis blue light receptor CRY1[J]. Plant Molecular Biology Reporter, 2009, 27(3): 334-341.
[41]  Shen Q, Chen Y F, Wang T, et al. Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr)genes increased artemisinin content in Artemisia annua (Asteraceae)[J]. Genetics and Molecular Research, 2012, 11: 3298-3309.
[42]  Zhang L, Jing F, Li F, et al. Development of transgenic Artemisia an-nua (Chinese wormwood) plants with an enhanced content of artemis-inin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing[J]. Biotechnology and Applied Biochemistry, 2009, 52: 199-207.
[43]  Graham I A, Besser K, Blumer S, et al. The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemis-inin[J]. Science, 2010, 327: 328-331.
[44]  Singh N D, Kumar S, Daniell H. Expression of β-glucosidase increas-es trichome density and artemisinin content in transgenic Artemisia an-nua plants[J]. Plant Biotechnology Journal, 2015: doi: 10.1111/ pbi.12476.
[45]  罗桂芬, 胡虹, 段金玉. 黄花蒿的组织培养[J]. 植物生理学通讯, 1995, 31: 207.
[46]  蔡国琴, 李国珍, 叶和春, 等. Ri质粒转化的青蒿发根培养及青蒿素 的生物合成[J]. 生物工程学报, 1995, 11: 315-320.
[47]  刘春朝, 王玉春, 欧阳藩, 等. 青蒿毛状根分支生长的动力学模型[J]. 应用与环境生物学报, 1997, 3: 385-388.
[48]  陈大华, 孟玉玲, 叶和春, 等. 青蒿转杜松烯合成酶基因发根系的培 养[J]. 植物学报, 1998, 40: 711-714.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133