全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

青蒿素:从抗疟机理与积累模式到临床应用——2015年诺贝尔生理学或医学奖简介

, PP. 16-20

Keywords: 青蒿素,抗疟疾,耐药性,新药开发,合成生物学

Full-Text   Cite this paper   Add to My Lib

Abstract:

以解读2015年度诺贝尔生理学或医学奖为契机,重点介绍了获奖者之一——中国药学家屠呦呦的科学贡献。通过切入相关研究动态与进展,初步揭示了青蒿素抗疟及疟原虫耐药的分子机理。从描述青蒿素天然合成规律到青蒿素人工合成现状,前瞻性地展望了青蒿素研究的未来,强调了青蒿素获奖给后人带来的启示。

References

[1]  WHO. WHO calls for an immediate halt to provision of single-drug artemisinin malaria pill[R]. 2006-01-19.
[2]  Noedl H, Se Y, Schaecher K, et al. Artemisinin resistance in cambodia 1 (ARC1) study consortium: Evidence of artemisinin-resistant malaria in western Cambodia[J]. New England Journal of Medicine, 2008, 359: 2619-2620.
[3]  Ashley E A, Dhorda M. Spread of artemisinin resistance in Plasmodium falciparum malaria[J]. New England Journal of Medicine, 2014, 371: 411-423.
[4]  Senok A C, Nelson E A S, Li K, et al. Thalassaemia trait, red blood cell age and oxidant stress: Effects on Plasmodium falciparum growth and sensitivity to artemisinin[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1997, 91: 585-589.
[5]  Meshnick S R, Tsang T W, Lin F B, et al. Activated oxygen mediates the antimalarial activity of qinghaosu[J]. Progress in Clinical Biological Research, 1989, 313: 95-104.
[6]  Cumming J N, Ploypradith P, Posner G H. Antimalarial activity of artemisinin (qinghaosu) and related trioxanes: Mechanism(s) of action[J]. Advances in Pharmacology, 1997, 37: 253-297.
[7]  Lisewski A M, Quiros J P, Ng C L, et al. Supergenomic network compression and the discovery of EXP1 as a glutathione transferase inhibited by artesunate[J]. Cell, 2014, 158: 916-928.
[8]  Li W, Mo W, Shen D, et al. Yeast model uncovers dual roles of mitochondria in the action of artemisinin[J]. PLoS Genetics, 2005, 1: e36.
[9]  Wang J, Huang L, Li J, et al. Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation[J]. PLoS One, 2010, 5: e9582.
[10]  Eckstein-Ludwig U, Webb R J, Van Goethem I D A, et al. Artemisinins target the SERCA of Plasmodium falciparum [J]. Nature, 2003, 424: 957-961.
[11]  Shandilya A, Chacko S, Jayaram B, et al. A plausible mechanism for the antimalarial activity of artemisinin: A computational approach[J]. Scientific Reports, 2013, 3: 2513.
[12]  Uhlemann A C, Cameron A, Eckstein-Ludwig U, et al. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins[J]. Nature Structural & Molecular Biology, 2005, 12: 628-629.
[13]  Krishna S, Pulcini S, Moore C, et al. Pumped up: Reflections on PfATP6 as the target for artemisinins[J]. Trends in Pharmacological Sciences, 2014, 35: 4-11.
[14]  Vickers C E, Gershenzon J, Lardau M T, et al. A unified mechanism of action for volatile isoprenoids in plant abiotic stress[J]. Nature Chemical Biology, 2009, 5: 283-291.
[15]  He J, Gao Q, Liao T, et al. An ecological implication of glandular trichome-sequestered artemisinin: As a sink of biotic/abiotic stress-triggered singlet oxygen[J]. Peer J PrePrints, 2015, 3: e1026.
[16]  Zeng Q P, Xiao N, Wu P, et al. Artesunate potentiates antibiotics by inactivating heme-harbouring bacterial nitric oxide synthase and catalase[J]. BMC Research Notes, 2011, 4: 223.
[17]  Bao F, Wu P, Xiao N, et al. Nitric oxide-driven hypoxia initiates synovial angiogenesis, hyperplasia and inflammatory lesions in mice[J]. PLoS One, 2012, 7: e34494.
[18]  Wang D T, Wu M, Li S, et al. Artemisinin mimics calorie restriction to extend yeast lifespan via a dual-phase mode: Aconclusion drawn from global transcriptome profiling[J]. Science China: Life Sciences, 2015, 58: 451-465.
[19]  Wang D T, He J, Wu M, et al. Artemisinin mimics calorie restriction to trigger mitochondrial biogenesis and compromise telomere shortening[J]. Peer J, 2015, 3: e822.
[20]  Zeng Q P, Zeng X M, Yang R Y, et al. Singlet oxygen as a candidate retrograde signaling transducer for modulating artemisinin biosynthetic genes in Artemisia annua[J]. Biologia Plantarum, 2011, 55: 669-674.
[21]  Schmid G, Hofheinz W. Total synthesis of Qinghaosu[J]. Journal of the American Chemical Society, 1983, 105(3): 624-625.
[22]  许杏样, 朱杰, 黄大中, 等. 青蒿素及其一类物构造和合成的研讨. X. 从青蒿酸立体操纵合成青蒿素和脱氧青蒿素[J]. 化学学报, 1983, 41: 574-575.
[23]  许杏祥, 朱杰, 黄大中, 等. 青蒿素及其一类物结构和合成的研究. XVII. 双氢青蒿酸甲酯的立体控制性合成——青蒿素全合成[J]. 化学学报, 1984, 42: 940-942.
[24]  Martin V J J, Pitera D J, Withers S T, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21: 796-802.
[25]  Ro D K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440: 940-943.
[26]  Mark P. Sanofi launches malaria drug production to maintain stability in artemisinin availability[R]. Chemistry World Online (RSC), 2013-04-19.
[27]  Palmer E. Sanofi shipping new malaria treatment manufactured from 'semisynthetic artemisinin'[R]. FiercePharmaManufacturing. 2014-09-14.
[28]  Zeng Q P. Artemisinin and nitric oxide: Mechenisms and implications in disease and health[M]. Berlin: Springer-Verlag, 2015.
[29]  Zeng Q P, Zhang P Z. Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase[J]. Nitric Oxide, 2011, 24: 110-112.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133