全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

舰船特装器材多目标优化配置方法

DOI: 10.3981/j.issn.1000-7857.2015.19.016, PP. 96-101

Keywords: 舰船特装器材,优化配置,保障概率,多目标优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对舰船海上执行任务期间随舰特装器材的保障问题,研究了特装器材的多目标优化配置方法。结合舰船特装器材保障的实际特点,以器材的体积、质量、费用为约束条件,以保障概率和利用率为优化目标,建立多目标多约束特装器材优化配置模型,并改进多目标粒子群算法,保证全局范围粒子多样性,避免算法过快收敛,以求得全局最优解。通过实例对比改进粒子群算法与标准算法的计算结果,分析不同指标权重比组合下的最优配置方案、不同约束条件下的多目标变化趋势,证明了改进粒子群算法的稳定性和多目标优化模型的实用性。

References

[1]  王乃超, 康锐. 多约束条件下备件库存优化模型及分解算法[J]. 兵工 学报, 2009, 30(2): 247-251. Wang Naichao, Kang Rui. An optimization model for inventory spares under multi-constaints and its decomposition algorithm [J]. Acta ArmamentarⅡ, 2009, 30(2): 247-251.
[2]  阮旻智, 李庆民, 张光宇, 等. 多约束下舰船装备携行备件保障方案优 化方法[J]. 兵工学报, 2013, 34(9): 1144-1149. Ruan Minzhi, Li Qingmin, Zhang Guangyu, et al. Optimization method of carrying spare parts support project for warship equipment under multi-contraints[J]. Acta ArmamentarⅡ, 2013, 34(9): 1144-1149.
[3]  刘勇, 盖强, 赵翀, 等. 多约束下舰船远航备件储量决策[J]. 舰船科学 技术, 2013, 35(11): 144-147. Liu Yong, Gai Qiang, Zhao Chong, et al. Research on spare parts storage decision for ships on sailing in multi-restraint[J]. Ship Science and Technology, 2013, 35(11): 144-147.
[4]  张志华, 费广玉, 应新雅. 基于满足率的随舰备件配置方案[J]. 海军 工程大学学报, 2014, 26(6): 73-77. Zhang Zhihua, Fei Guangyu, Ying Xinya. Configuration scheme for shipboard spares according to sufficient rate[J]. Journal of Naval University of Engineering, 2014, 26(6): 73-77.
[5]  费广玉, 张志华, 刘军, 等. 舰船随舰备件配置方法[J]. 指挥控制与仿 真, 2014, 36(3): 133-136. Fei Guangyu, Zhang Zhihua, Liu Jun, et al. Configuration method of spares on warship[J]. Command Control & Simulation, 2014, 36(3): 133-136.
[6]  Zhang Yongqiang, Xu Zongchang, Guo Jian. Shipborne spare parts support scheme based on multi-group and multi-objective particle swarm optimization[J]. Journal of System Simulation, 2014, 26(10): 2423-2429.
[7]  Reyes Sierra M, Coello C A C. Multi-objective particle swarm optimizers: a survey of the state-of-the-art[J]. International of Computational Intelligence Research, 2006, 2(3): 287-308.
[8]  Kumar R, Sharma D, Sadu A.A hybrid multi-agent based particle swarm optimization algorithm for economic power dispatch [J]. International Journal of Electrical Power and Energy Systems, 2011, 33(1): 115-123.
[9]  叶洪涛, 罗飞, 许玉格.解决多目标优化问题的差分优化算法研究进 展[J].控制理论与应用, 2013, 30(7): 922-928. Ye Hongtao, Luo Fei, Xu Yuge. Differential evolution for solving multiobjective optimization problems: A survey of the state-of-the-art[J]. Control Theory & Applications, 2013, 30(7): 922-928.
[10]  郭俊, 桂卫华, 陈晓方. 基于粗糙集理论与差分进化的混合多目标优 化算法[J]. 控制与决策, 2013, 28(5): 736-740. Guo Jun, Gui Weihua, Chen Xiaofang. A hybrid algorithm based on rough set theory and differential evolution for multi-objective optimization[J]. Control and Decision, 2013, 28(5): 736-740.
[11]  赵建忠, 李海军, 叶文, 等. 改进系统备件满足率约束下的备件优化 配置建模[J].兵工学报, 2013, 34(9): 1187-1192. Zhao Jianzhong, Li Haijun, Ye Wen, et al. Optimization configuration modeling of spare parts under constraint of improved system spare part fill rate[J]. Acta ArmamentarⅡ, 2013, 34(9): 1187-1192.
[12]  肖晓伟, 肖迪, 林锦国, 等. 多目标优化问题的研究概述[J]. 计算机应 用研究, 2011, 28(3): 805-808. Xiao Xiaowei, Xiao Di, Lin Jinguo, et al. Overview on multi-objective optimization problem research[J]. Application Research of Computer, 2011, 28(3): 805-808.
[13]  王丽萍, 江波, 邱飞岳. 基于决策偏好的多目标粒子群算法及其应用[J]. 计算机集成制造系统, 2010, 16(1): 140-148. Wang Liping, Jiang Bo, Qiu Feiyue. Multi-objective particle swarm optimization based on decision preferences and its application[J]. Computer Integrated Manufacturing Systems, 2010, 16(1): 140-148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133