全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

基于时间反转矩阵理论的障碍物形态数据的确定

DOI: 10.3981/j.issn.1000-7857.2014.23.004, PP. 33-38

Keywords: MUSIC算法,时间反转矩阵,定位精确,Ipswich数据集,微波

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对经典多重信号分类法(MUSIC)算法存在图像重建包含目标信息较少的问题,引入时间反转矩阵推导建立确定散射物图像的理论方法,分析改进MUSIC算法的定位精确性及其与阵元间距信噪比信号入射角度差间的关系。应用Ipswich数据集,试验得出改进算法实现了较好的数据图像重建,为算法在确定障碍物形状上的优势提供依据。通过对非对称的双圆形金属柱体对比试验,得出算法在高频情况下可以较好的完成图像重建,且频率越高图像重建的特征值越小,分辨率越高。

References

[1]  欧阳华, 吴正国, 尹为民. dq变换和MUSIC算法在间谐波检测中的应 用[J]. 电力系统及其自动化学报, 2013, 24(5): 83-87. Ouyang Hua, Wu Zhengguo, Yin Weimin. Application of dq transform and MUSIC algorithm in interharmonic detection[J]. Proceedings of the Chinese Society of Universities, 2013, 24(5): 83-87.
[2]  Schmidt R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276-280.
[3]  Haber F, Zoltowski M. Spatial spectrum estimation in a coherent signal environment using an array in motion[J]. IEEE Transactions on Antennas and Propagation, 1986, 3(5): 301-310.
[4]  Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics Speech and Signal Processing, 1989, 37(8): 984-995.
[5]  Krim H, Viberg M. Two decades of array signal processing[J]. IEEE Signal Processing Magazine, 1996, 13(4): 67-94.
[6]  Chargé P, Wang Y, Saillard J. An extended cyclic MUSIC algorithm[J]. IEEE Transactions on Signal Processing, 2003, 51(7): 1695-1701.
[7]  Ammari H, Iakovleva E, Lesselier D. A MUSIC algorithm for locating small inclusions buried in a half-space from the scattering amplitude at a fixed frequency[J]. Multiscale Modeling & Simulation, 2005, 3(3): 597-628.
[8]  刘剑, 于红旗, 黄知涛, 等. 基于二阶预处理的共轭扩展MUSIC算法[J]. 系统工程与电子技术, 2008, 30(1): 57-60. Liu Jian, Yu Hongqi, Huang Zhitao, et al. Conjugate extended MUSIC algorithm based on second-order preprocessing[J]. Systems Engineering and Electronics, 2008, 30(1): 57-60.
[9]  Wang Y M, Chew W C. An iterative solution of the two-dimensional electromagnetic inverse scattering problem[J]. International Journal of Imaging Systems and Technology, 1989, 1(1): 100-108.
[10]  Lin C Y, Kiang Y W. Inverse scattering for conductors by the equivalent source method[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(3): 310-316.
[11]  Hua Y. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(3): 370-376.
[12]  杨鹏, 杨峰, 聂在平, 等. MUSIC算法在柱面共形天线阵DOA估计中 的应用研究[J]. 电波科学学报, 2008, 23(2): 288-291. Yang Peng, Yang Feng, Nie Zaiping, et al. DOA estimation of cylindrical conformal array by MUSIC algorithm[J]. Chinese Journal of Radio Science, 2008, 23(2): 288-291.
[13]  何轲, 相敬林, 韩鹏, 等. 空间任意阵的MUSIC算法性能研究[J]. 计 算机测量与控制, 2010(3): 688-690. He Ke, Xiang Jinglin, Han Peng, et al. Performance analysis of MUSIC for arbitary array[J]. Computer Measurement & Control, 2010 (3): 688-690.
[14]  Kirsch A. The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media[J]. Inverse Problems, 2002, 18(4): 1025.
[15]  Tsakalides P, Nikias C L. The robust covariation-based MUSIC (ROCMUSIC) algorithm for bearing estimation in impulsive noise environments[J]. IEEE Transactions on Signal Processing, 1996, 44(7): 1623-1633.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133