Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
[2]
Belytschko T, Mo?s N, Usui S, et al. Arbitrary discontinuities in finite elements[J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 993-1013.
[3]
Mo?s N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
[4]
Sukumar N, Prévost J H. Modeling quasi static crack growth with the extended finite element method part I: Computer implementation[J]. International Journal of Solids and Structures, 2003, 40(26): 7513-7537.
[5]
Chen D H, Nisitani H. Body force method[J]. International Journal of Fracture, 1997, 86(1): 161-189.
[6]
CookTS,ErdoganF.Stressinboundedmaterialwithacrack perpendicular to the interface[J]. International Journal of Engineering Science, 1972, 10: 677-697.
[7]
Wang T C. Stress state in front of a crack perpendicular to bi-material interface[J]. Engineering Fracture Mechanics, 1998, 59(4): 471-485.
[8]
Lim W, Lee C. Evaluation of stress intensity factors for a crack normal to bi-material interface using isoparametric finite elements[J]. Engineering Fracture Mechanics, 1995, 52(1): 65-70.
[9]
Chang J H, Wu D J. Calculation of mixed-mode stress intensity factors for a crack normal to a bimaterial interface using contour integrals[J]. Engineering Fracture Mechanics, 2003, 70(13): 1675-1695.
[10]
Lin K Y, Mar J W. Finite element analysis of stress intensity factors for cracks at a bi-material interface[J]. International Journal of Fracture, 1976, 12(4): 521-531.
[11]
姚战军, 倪新华, 郑坚, 等. 陶瓷颗粒增强金属基复合材料的细观强度 分析[J]. 应用力学学报, 2007, 24(3): 443-446. Yao Zhanjun, Ni Xinhua, Zheng Jian, et al. Micro-strength of particle reinforced metal matrix composites[J]. Chinese Journal of Applied Mechanics, 2007, 24(3): 443-446.
[12]
王扬卫, 王富耻, 于晓东, 等. 梯度陶瓷金属装甲复合材料研究进展[J]. 兵工学报, 2007, 28(2): 209-214. Wang Yangwei, Wang Fuchi, Yu Xiaodong, et al. Research advancement on graded ceramic-metal armor composites[J]. Acta Armamentarii, 2007, 28(2): 209-214.
[13]
杨福树, 孙志刚, 李龙彪, 等. 正交铺设陶瓷基复合材料基体裂纹演化 研究[J]. 南京航空航天大学学报: 英文版, 2011, 28(1): 111-119. Yang Fushu, Sun Zhigang, Li Longbiao, et al. Research on matrix crack evolution of cross-ply ceramicmatrix composite[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(1): 111-119.
[14]
Abdelaziz Y, Hamouine A. A survey of the extended finite element[J]. Computers and Structures, 2008, 86(11): 1141-1151.
[15]
Mo?s N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets part I: Mechanical model[J]. International Journal for Numerical Methods in Engineering, 2002, 53 (11): 2549-2568.
[16]
Huang R, Prévost J H, Huang Z Y, et al. Channel cracking of thin films with the extended finite element method[J]. Engineering Fracture Mechanics, 2003, 70(18): 513-2526.
[17]
Sukumar N, Huang Z Y, Prévost J H, et al. Partition of unity enrichment for bimaterial interface cracks[J]. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1075-1102.
[18]
Bouhala L, Shao Q, Koutsawa Y, et al. An XFEM crack-tip enrichment for a crack terminating at a bi-material interface[J]. Engineering Fracture Mechanics, 2013, 102: 51-64.
[19]
Chen D H. A crack normal to and terminating at a bimaterial interface[J]. Engineering Fracture Mechanics, 1994, 49(4): 517-532.
[20]
Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear[J]. Journal of Basic Engineering, 1963, 85 (4): 519-527.
[21]
Chang J, Xu J Q. The singular stress field and stress intensity factors of a crack terminating at a bimaterial interface[J]. International Journal of Mechanical Science, 2007, 49(7): 888-897.