全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

丛枝菌根对采煤沉陷区紫穗槐生长及土壤改良的影响

DOI: 10.3981/j.issn.1000-7857.2014.11.003, PP. 26-32

Keywords: 丛枝菌根,土壤质量,侵染率,球囊霉素相关土壤蛋白

Full-Text   Cite this paper   Add to My Lib

Abstract:

丛枝菌根技术是目前矿区生态修复的重要手段之一。通过向紫穗槐接种丛枝菌根(AM),研究接种后2~14个月间菌根对紫穗槐生长和土壤改良的影响。结果表明,与不接种相比,接种AM极显著提高植物成活率7.2%~9.7%,株高极显著增加34%~62%、冠幅极显著增加39%~65%;极显著提高菌根侵染率16%~21%,极显著提高菌丝密度50%~70%;菌根侵染率、菌丝密度与土壤有机碳、全氮、速效磷、速效钾、碱解氮含量显著或极显著正相关;接种AM能够显著降低土壤pH值,提高土壤有机碳、全氮、速效磷、速效钾、碱解氮含量;球囊霉素相关土壤蛋白是土壤有机质的重要组成部分,可以灵敏反映土壤质量的变化。接种AM能够促进采煤沉陷区紫穗槐的生长发育和土壤改良。

References

[1]  李建华, 郜春花, 卢朝东, 等. 菌剂与肥料配施对矿区复垦土壤白三叶草生长的影响[J]. 中国生态农业学报, 2011, 19(2): 280-284. Li Jianhua, Gao Chunhua, Lu Chaodong, et al. Effect of combined application of microbial inoculum and fertilizeron white clover growth in reclaimed mine soil[J]. Chinese Journal of Eco-Agriculture, 2011, 19 (2): 280-284.
[2]  胡振琪, 魏忠义, 秦萍. 矿山复垦土壤重构的概念与方法[J]. 土壤, 2005, 37(1): 8-12. Hu Zhenqi, Wei Zhongyi, Qin Ping. Concept and methods for soil reconstruction in mined land reclamation[J]. Soils, 2005, 37(1): 8-12.
[3]  崔树军, 谷立坤, 廉有轩, 等. 煤矿废弃地的微生物修复技术[J]. 金属 矿山, 2010(4): 176-179. Cui Shujun, Gu Likun, Lian Youxuan, et al. Research of microbiology technology in ecological remediation of the abandoned coal mining land[J]. Metal Mine, 2010(4): 176-179.
[4]  张桃林, 潘剑君, 赵其国. 土壤质量研究进展与方向[J]. 土壤, 1999, 31(1): 2-8. Zhang Taolin, Pan Jianjun, Zhao Qiguo. Research progress and direction of soil quality[J]. Soils, 1999, 31(1): 2-8.
[5]  岳辉, 毕银丽, Y. Zhakypbek, 等. 接种菌根对神东矿区采煤沉陷地的生态修复效应[J]. 科技导报, 2012, 30(36): 56-60. Yue Hui, Bi Yinli, Zhakypbek Y, et al. Ecological reclamation effect of arbuscualr mycorrhizal inoculum on subsided land in the area of shendong coal mine[J]. Science & Technology Review, 2012, 30(36): 56-60.
[6]  Smith S E, Read D J. Mycorrhizal symbiosis[M]. London: Academic Press, 1997.
[7]  Juge C, Prévost D, Bertrand A, et al. Growth and biochemical responses of soybean to double and triple microbial associations with Bradyrhizobium, Azospirillum and arbuscular mycorrhizae[J]. Applied Soil Ecology, 2012, 61(10): 147-157.
[8]  弓明钦, 陈应龙, 仲崇禄. 菌根研究及其应用[M]. 北京: 中国林业出版社, 1997. Gong Mingqin, Chen Yinglong, Zhong Chonglu. Applying research of mycorrhiza[M]. Beijing: China Foresrty Press, 1997.
[9]  Vergeer P, Berg L J L, Baar J, et al. The effect of turf cutting on plant and arbuscular mycorrhizal spore recolonisation: Implications for heathland restoration[J]. Biological Conservation, 2006, 129(2): 226- 235.
[10]  Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97-107.
[11]  鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005. Bao Shidan. Agricultural chemical soil analysis[M]. Beijing: China Agriculture Press, 2005.
[12]  Abbott L K, Robson A D, De Boer G. The effect of phosphorus on the formation of hyphae in soil by the vesicular- arbuscular mycorrhizal fungus, Glomus Fasciculatum[J]. New Phytologist, 1984, 97(3): 437- 446.
[13]  Phillips J M, Hayman D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970, 55(1): 158-160.
[14]  杜善周, 毕银丽, 吴王燕, 等. 丛枝菌根对矿区环境修复的生态效应[J]. 农业工程学报, 2008, 24(4): 113-116. Du Shanzhou, Bi Yinli, Wu Wangyan, et al. Ecological effects of arbuscular mycorrhizal fungi on environmental phytoremediation in coal mine areas[J]. Transactions of the CSAE, 2008, 24(4): 113-116.
[15]  杜介方, 张彬, 解宏图, 等. 不同施肥处理对球囊霉素土壤蛋白含量 的影响[J]. 土壤通报, 2011, 42(3): 573-577. Du Jiefang, Zhang Bin, Xie Hongtu, et al. The effect of fertilization treatments on the concentration of GRSP[J]. Chinese Journal of Soil Science, 2011, 42(3): 573-577.
[16]  Nichols K A, Wright S F. Carbon and nitrogen in operationally defined soil organic matter pools[J]. Biology and Fertility of Soils, 2006, 43(2): 215-220.
[17]  Halvorson J J, Gonzalez J M. Tannic acid reduces recovery of watersoluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein[J]. Soil Biology and biochemistry, 2006, 40(1): 186-197.
[18]  He X, Li Y, Zhao L. Dynamics of arbuscular mycorrhizal fungi and glomalin in the rhizosphere of Artemisia ordosica Krasch. in Mu Us sandland, China[J]. Soil Biology and Biochemistry, 2010, 42(8): 1313- 1319.
[19]  Graham J H, Linderman R G, Menge J A. Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of troyer citrange[J]. New Phytologist, 1982, 91(2): 183-189.
[20]  符亚儒, 高保山, 封斌, 等. 陕北榆林风沙区防风固沙林体系结构配 置与效益研究[J]. 西北林学院学报, 2005, 20(2): 18-23. Fu Yaru, Gao Baoshan, Feng Bin, et al. Structure configuration and protecting benefit of Yulin sandbreak forest system in northern Shaanxi[J]. Journal of Northwest Forestry University, 2005, 20(2): 18-23.
[21]  Heidari M, Karami V. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress[J]. Journal of the Saudi Society of Agricultural Sciences, 2014, 13(1): 9-13.
[22]  Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis[J]. Plant and Soil, 1994, 159(1): 89-102.
[23]  高子勤, 张淑香. 连作障碍与根际微生态研究Ⅰ.根系分泌物及其生 态效应[J]. 应用生态学报, 1998, 9(5): 549-554. Gao Ziqin, Zhang Shuxiang. Continuous cropping obstacle and rizospheric microecology I. Root exudates and their ecological effects[J]. Chinese Journal of Applied Ecology, 1998, 9(5): 549-554.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133