卢芸, 孙庆丰, 李坚. 高频超声法纳米纤丝化纤维素的制备与表征[J]. 科技导报, 2013, 31(15): 17-22. Lu Yun, Sun Qingfeng, Li Jian. Preparation and characterization of nanofiber films and foams based on ultrasonic nanofibrillated cellulose from wood[J]. Science & Technology Review, 2013, 31(15): 17-22.
[2]
陈砺, 邓丽华, 严宗诚, 等. 木质纤维素水解制化学品的研究进展[J]. 科技导报, 2011, 29(34): 68-72. Chen Li, Deng Lihua, Yan Zongcheng, et al. Research progress of lignocellulose hydrolysis of chemicals[J]. Science & Technology Review, 2011, 29(34): 68-72.
[3]
田野, 吴敏, 孟令蝶, 等. 天然纤维素纤维改性及其对水中砷的吸附[J]. 科技导报, 2010, 28(22): 29-32. Tian Ye, Wu Min, Meng Lingdie, et al. Modification of natural cellulose fibers for arsenic adsorption from water[J]. Science & Technology Review, 2010, 28(22): 29-32.
[4]
樊国栋, 康丽, 李刚辉. 离子液体在糖酯合成中的研究进展[J]. 科技导 报, 2012, 30(2): 70-73. Fan Guodong, Kang Li, Li Ganghui. Progress of the synthesis of sugar esters in ionic liquids[J]. Science & Technology Review, 2012, 30(2): 70-73.
[5]
Holbrey D, Seddon R. Ionic liquids[J]. Clean Products and Processes, 1999, 1(4): 223-236.
[6]
Antonietti M, Kuang D, Smarsly B, et al. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures[J]. Angewandte Chemie International Edition, 2004, 43 (38): 4988-4992.
[7]
Kubisa P. Ionic liquids as solvents for polymerization processes— progress and challenges[J]. Progress in Polymer Science, 2009, 34(12): 1333-1347.
[8]
Tan Y, MacFarlane R, Upfal J, et al. Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid[J]. Green Chemistry, 2009, 11(3): 339-345.
[9]
Zhang H, Wu J, Zhang J, et al. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose[J]. Macromolecules, 2005, 38(20): 8272-8277.
[10]
Zhu S, Wu Y, Chen Q, et al. Dissolution of cellulose with ionic liquids and its application: A mini-review[J]. Green Chemistry, 2006, 8(4): 325-327.
[11]
Sehaqui H, Zhou Q, Berglund L A. High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC)[J]. Composites Science and Technology, 2011, 71(13): 1593-1599.
[12]
陈嵩岳. 废旧报纸做肥料对植物生长影响的研究[D]. 长春: 吉林大 学, 2009. Chen Songyue. Study of the effect of fertilizer made by waste paper on plant growth[D]. Changchun: Jilin University, 2009.
[13]
Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry[J]. Advanced Materials, 2008, 20(10): 1849-1852.
[14]
Olsson T, Samir A, Salazar-Alvarez G, et al. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates[J]. Nature Nanotechnology, 2010, 5(8): 584-588.
[15]
Nystr?m G, Razaq A, Str?mme M, et al. Ultrafast all-polymer paperbased batteries[J]. Nano Letters, 2009, 9(10): 3635-3639.
[16]
Alila S, Besbes I, Vilar R, et al. Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study[J]. Industrial Crops and Products, 2013, 41: 250-259.
[17]
Brinchi L, Cotana F, Fortunati E, et al. Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications[J]. Carbohydrate Polymers, 2013, 94(1): 154-169.
[18]
Hu L, Liu N, Eskilsson M, et al. Silicon-conductive nanopaper for Liion batteries[J]. Nano Energy, 2013, 2(1):138-145.
[19]
Segal L, Creely J J, Martin Jr A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the Xray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
[20]
Gesser D, Goswami C. Aerogels and related porous materials[J]. Chemical Reviews, 1989, 89(4): 765-788.
[21]
Nelson L, O'Connor T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II[J]. Journal of Applied Polymer Science, 1964, 8(3): 1325-1341.