全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

多功能两栖生物型子母机器人系统研究

, PP. 64-71

Full-Text   Cite this paper   Add to My Lib

Abstract:

对于水陆两栖及其过渡环境中狭小空间内的勘测,微小型水陆两栖机器人能够完成许多单一推进方式的机器人所无法完成的两栖任务,如水下管道的检测、珊瑚礁内鱼类的监测、水下岩缝中矿物采样等,因此需要一种能够具有微型结构、多功能运动模式、高位置精度、长续航时间等特点的机器人,以适应复杂两栖环境。提出一种两栖子母机器人设计方案。其中,两栖母机器人采用腿-矢量化喷水两栖推进,利用一套驱动系统实现两栖运动,以降低机构和控制的复杂度,增大其负载能力。两栖推进机构和机器人外形可以根据介质环境以及任务特点的改变,进行主动的形态与结构变化。微型子机器人由人工智能驱动器驱动,可以实现游行、爬行、转动、上浮/下潜、抓取等动作。母机器人和子机器人之间通过智能软缆线连接,实现子母机器人之间的通信及子机器人的回收。

References

[1]  Georgiades C, German A, Hogue A. AQUA:An aquatic walking robot[C]//Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2004: 3525-3531.
[2]  Hobson BW, Kemp M, Moody R. Amphibious robot devices and related methods, USA:6974356, 2005.
[3]  Crespi A, Ijspeert A J. AmphiBotII: Anamphibious snake robot that crawls and swims using a central pattern generator[C]//Proceedings of the 9th Interna-tional Conference on Climbing andWalking Robots, Brussels, 2006: 19-27.
[4]  Yamada H, Chigisaki S, Mori M. Development of amphibious snake-like robot ACM-R5[C]//Proceedings of 36th International Symposiumon Robotics, Japan, 2005: 433-440.
[5]  Crespi A, Badertscher A, Guignard A, et al. PhiBot I: an amphibious snake-like robot[J]. Robotics and Autonomous Systems, 2005, 50(4): 163-175.
[6]  Matsuo M, Yokoyama T, Ueno D, et al. Biomimetic motion control system based on a CPG for an amphibious multi-link mobile robot[J]. Journal of Bionic Engineering, 2008, 5(Suppl): 91-97.
[7]  王立权, 刘德峰, 陈东良, 等. 两栖多足机器人水下步态分析[J]. 机器人, 2008, 30(4): 333-339.
[8]  冯巍, 杨洋, 周静. 小型两栖机器人推进机构设计与水动力学分析[J]. 机械科学与技术, 2006, 25(11): 1325-1372.
[9]  侯康, 孙汉旭, 贾庆轩. 球-轮复合可变形机器人的结构设计与分析[J]. 机械工程学报, 2012, 48(15): 25-31.
[10]  Yu J Z, Hu Y H, Huo J Y, et al. Dolphin-like propulsive mechanism based on an adjustable Scotch yoke[J]. Mechanism and Machine Theory, 2009, 44(3): 603-614.
[11]  Liang X, Xu M, Xu L C, et al. The amphiHex: a novel amphibious robot with transformable leg-flipper composite propulsion mechanism[C]//Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). Vilamoura, Algarve, Portugal: IEEE, 2012.
[12]  Shi L W, Guo S X, Mao S L, et al. Development of an amphibious turtle-inspired spherical mother robot[J]. Journal of Bionic Engineering, 2013, 10(4): 446-455.
[13]  Li M X, Guo S X, Hirata H, et al. Design and performance evaluation of an amphibious spherical robot[J]. Robotics and Autonomous Systems, 2015, 64: 21-34.
[14]  Pan SW, Shi LW, Guo S X. A kinect-based real-time compressive tracking system for amphibious spherical robots[J]. Sensors, 2015, 15(4): 8232-8252.
[15]  Li Y X, Guo S X, Yue C F. Preliminary concept of a novel spherical underwater robot[J]. International Journal of Mechatronics and Automation, 2015, 5 (1): 11-21.
[16]  Yue C F, Guo S X, Li M X, et al. Mechantronic system and experiments of a spherical underwater robot: SUR-II[J]. Journal of Intelligent and Robotic Systems, 2015, 80(2): 325-340.
[17]  Yue C F, Guo S X, Shi LW. Design and performance evaluation of a biomimetic microrobot for the father-son underwater intervention robotic system[J]. Microsystem Technologies, 2015. DOI: 10.1007/s00542-015-2457-z.
[18]  Zhao Z X, Guo S X. Design of an acoustic communication system based on FHMA for multiple underwater vehicles[J]. Wireless Engineering and Technology, 2010, 1: 27-35.
[19]  Lin X H, Guo S X. Development of a spherical underwater robot equipped with multiple vectored water-jet-based thrusters[J]. Journal of Intelligent and Robotic Systems, 2012, 67(3-4): 307-321.
[20]  Zhang W, Guo S X, Asaka K. Development of an underwater biomimetic microrobot with compact structure and flexible locomotion[J]. Microsystem Technologies, 2006, 13(8-10): 883-890.
[21]  Zhang W, Guo S X, Asaka K. Development of a novel type of an underwater microrobot with biomimetic locomotion[J]. Journal of Applied Bionics and Biomechanics, 2006, 3(3): 245-252.
[22]  Guo S X, Okuda Y, Zhang W, et al. The Development of a hybrid underwater micro biped robot[J]. Journal of Applied Bionics and Biomechanics, 2006, 3 (3): 143-150.
[23]  苏玉东, 叶秀芬, 郭书祥. 基于IPMC驱动的自主微型机器鱼的研究[J]. 机器人, 2010, 32(2): 262-270.
[24]  叶秀芬, 朱玲, 刘世超, 等. 基于PVDF传感器的仿生机器鱼测控系统[J]. 高技术通讯, 2010, 20(8): 850-855.
[25]  Gao B F, Guo S X, Ye X F. Motion-control analysis of ICPF-actuated underwater biomimetic microrobots[J]. International Journal of Mechatronics and Automation, 2014, 1(2): 79-89.
[26]  Shi LW, Guo S X, Li M X, et al. A novel soft biomimetic microrobot with two motion attitudes[J]. Sensors, 2012, 12(12): 16732-16758.
[27]  Guo S X, Shi LW, Xiao N, et al. A biomimetic underwater microrobot with multifunctional locomotion[J]. Robotics and Autonomous Systems, 2012, 60 (12): 1472-1483.
[28]  Shi LW, Guo S X, Mao S L, et al. Development of a lobster-inspired underwater microrobot[J]. International Journal of Advanced Robotic Systems, 2013 (DOI: 10.5772/54868), 10(44:2015) 1-15.
[29]  Shi L W, Guo S X, Asaka K. Development of a new jellyfish-type underwater microrobot[J]. International Journal of Robotics and Automation, 2011, 26 (2): 229-241.
[30]  Boxerbaum A S, Werk P, Quinn R D, et al. Design of an autonomous amphibious robot for surf zone operation: part i mechanical design for multi-mode mobility[ C]//Proceedings of 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. California, USA: IEEE, 2005: 1459-1464.
[31]  Prahacs C, Saunders A, Smith M K, et al. Towards legged amphibious mobile robotics[C]//The Inaugural Canadian Design Engineering Network (CDEN/ RCCI) Design Conference. Montreal, Canada, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133