全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

玉米ELM1基因的序列变异及与株型和穗部相关性状的关联分析

DOI: 10.3981/j.issn.1000-7857.2014.35.009, PP. 78-84

Keywords: 玉米,ELM1,基因,序列变异,株型和穗部性状,关联分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

玉米elm1突变体使得光敏色素载色体合成受阻并导致光敏色素活性下降,从而使得突变体植株表现出对光的不敏感性.为研究玉米ELM1基因序列的多态性及其与主要农艺性状之间的关联,本研究对玉米ELM1基因在80个自交系中进行了目标序列重测序,并与株高和穗位高2个株型性状以及穗长、穗粗、轴粗、穗重、行粒数、穗行数和穗粒数7个穗部性状进行关联分析.ELM1基因在供试玉米自交系中共有85个变异,包括73个SNP和12个Indel.尽管该基因的编码区不含Indel,但15个SNP变异位点依然可以将编码区划分成7种单倍型,并编码6种ELM1蛋白质.关联分析发现,玉米ELM1基因中1个非同义突变位点与穗位高存在显著关联,另有2个非同义突变位点与行粒数存在显著关联.

References

[1]  Yin Z, Zhang Z, Deng D, et al. Characterization of Rubisco activase genes in maize: An alpha-isoform gene functions alongside a beta-isoform gene[J]. Plant Physiology, 2014, 164(4): 2096-2106.
[2]  詹克慧, 李志勇, 侯佩, 等. 利用修饰光敏色素信号途径进行作物改良 的可行性[J]. 中国农业科学, 2012, 45(16): 3249-3255. Zhan Kehui, Li Zhiyong, Hou Pei, et al. A new strategy from crop improvement through modification of phytochrome signalling pathways[J]. Scientia Agricultura Sinica, 2012, 45(16): 3249-3255.
[3]  QuailPH.Phytochromephotosensorysignallingnetworks[J].NatureReviews Molecular Cell Biology, 2002, 3(2): 85-93.
[4]  Ballaré C L, Casal J J. Light signals perceived by crop and weed plants[J]. Field Crops Research, 2000, 67(2): 149-160.
[5]  Wu F Q, Fan C M, Zhang X M, et al. The phytochrome gene family in soybean and a dominant negative effect of a soybean PHYA transgene on endogenous Arabidopsis PHYA[J]. Plant Cell Reports, 2013, 32(12): 1879-1890.
[6]  Abdurakhmonov I Y, Buriev Z T, Logan-Young C J, et al. Duplication, divergence and persistence in the phytochrome photoreceptor gene family of cottons (Gossypium spp.)[J]. BMC Plant Biology, 2010, 10: 119.
[7]  何冰, 刘玲珑, 张文伟, 等. 植物叶色突变体[J]. 植物生理学通讯, 2006, 42(1): 1-9. He Bing, Liu Linglong, Zhang Wenwei, et al. Plant leaf color mutants[J]. Plant Physiology Communications, 2006, 42(1): 1-9.
[8]  Sawers R J, Linley P J, Farmer P R, et al. Elongated mesocotyl1, a phytochrome-deficient mutant of maize[J]. Plant Physiology, 2002, 130 (1): 155-163.
[9]  Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
[10]  Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
[11]  Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
[12]  Fu Y X, Li W H. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3): 693-709.
[13]  Bradbury P J, Zhang Z, Kroon D E, et al. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23 (19): 2633-2635.
[14]  Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11479-11484.
[15]  Yan J, Warburton M, Crouch J. Association mapping for enhancing maize (L.) genetic improvement[J]. Crop Science, 2011, 51(2): 433-449.
[16]  Ching A, Caldwell K S, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines[J]. BMC Genetics, 2002, 3: 19.
[17]  Markelz N H, Costich D E, Brutnell T P. Photomorphogenic responses in maize seedling development[J]. Plant Physiology, 2003, 133(4): 1578- 1591.
[18]  Sawers R J, Linley P J, Gutierrez-Marcos J F, et al. The ELM1 (ZmHy2) gene of maize encodes a phytochromobilin synthase[J]. Plant Physiology, 2004, 136(1): 2771-2781.
[19]  Xu S, Yang Z, Zhang E, et al. Nucleotide diversity of maize ZmBT1 gene and association with starch physicochemical properties[J]. PloS One, 2014, 9(8): e103627.
[20]  Jiao Y, Zhao H, Ren L, et al. Genome- wide genetic changes during modern breeding of maize[J]. Nature Genetics, 2012, 44(7): 812-815.
[21]  Childs K L, Miller F R, Cordonnier- Pratt M M, et al. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B[J]. Plant Physiology, 1997, 113(2): 611-619.
[22]  BoylanMT,QuailPH.Oatphytochromeisbiologicallyactivein transgenic tomatoes[J]. The Plant Cell, 1989, 1(8): 765-773.
[23]  Thiele A, Herold M, Lenk I, et al. Heterologous expression of arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development[J]. Plant Physiology, 1999, 120(1): 73-82.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133