Yin Z, Zhang Z, Deng D, et al. Characterization of Rubisco activase genes in maize: An alpha-isoform gene functions alongside a beta-isoform gene[J]. Plant Physiology, 2014, 164(4): 2096-2106.
[2]
詹克慧, 李志勇, 侯佩, 等. 利用修饰光敏色素信号途径进行作物改良 的可行性[J]. 中国农业科学, 2012, 45(16): 3249-3255. Zhan Kehui, Li Zhiyong, Hou Pei, et al. A new strategy from crop improvement through modification of phytochrome signalling pathways[J]. Scientia Agricultura Sinica, 2012, 45(16): 3249-3255.
Ballaré C L, Casal J J. Light signals perceived by crop and weed plants[J]. Field Crops Research, 2000, 67(2): 149-160.
[5]
Wu F Q, Fan C M, Zhang X M, et al. The phytochrome gene family in soybean and a dominant negative effect of a soybean PHYA transgene on endogenous Arabidopsis PHYA[J]. Plant Cell Reports, 2013, 32(12): 1879-1890.
[6]
Abdurakhmonov I Y, Buriev Z T, Logan-Young C J, et al. Duplication, divergence and persistence in the phytochrome photoreceptor gene family of cottons (Gossypium spp.)[J]. BMC Plant Biology, 2010, 10: 119.
[7]
何冰, 刘玲珑, 张文伟, 等. 植物叶色突变体[J]. 植物生理学通讯, 2006, 42(1): 1-9. He Bing, Liu Linglong, Zhang Wenwei, et al. Plant leaf color mutants[J]. Plant Physiology Communications, 2006, 42(1): 1-9.
[8]
Sawers R J, Linley P J, Farmer P R, et al. Elongated mesocotyl1, a phytochrome-deficient mutant of maize[J]. Plant Physiology, 2002, 130 (1): 155-163.
[9]
Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
[10]
Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452.
[11]
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism[J]. Genetics, 1989, 123(3): 585-595.
[12]
Fu Y X, Li W H. Statistical tests of neutrality of mutations[J]. Genetics, 1993, 133(3): 693-709.
[13]
Bradbury P J, Zhang Z, Kroon D E, et al. TASSEL: Software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23 (19): 2633-2635.
[14]
Remington D L, Thornsberry J M, Matsuoka Y, et al. Structure of linkage disequilibrium and phenotypic associations in the maize genome[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11479-11484.
[15]
Yan J, Warburton M, Crouch J. Association mapping for enhancing maize (L.) genetic improvement[J]. Crop Science, 2011, 51(2): 433-449.
[16]
Ching A, Caldwell K S, Jung M, et al. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines[J]. BMC Genetics, 2002, 3: 19.
[17]
Markelz N H, Costich D E, Brutnell T P. Photomorphogenic responses in maize seedling development[J]. Plant Physiology, 2003, 133(4): 1578- 1591.
[18]
Sawers R J, Linley P J, Gutierrez-Marcos J F, et al. The ELM1 (ZmHy2) gene of maize encodes a phytochromobilin synthase[J]. Plant Physiology, 2004, 136(1): 2771-2781.
[19]
Xu S, Yang Z, Zhang E, et al. Nucleotide diversity of maize ZmBT1 gene and association with starch physicochemical properties[J]. PloS One, 2014, 9(8): e103627.
[20]
Jiao Y, Zhao H, Ren L, et al. Genome- wide genetic changes during modern breeding of maize[J]. Nature Genetics, 2012, 44(7): 812-815.
[21]
Childs K L, Miller F R, Cordonnier- Pratt M M, et al. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B[J]. Plant Physiology, 1997, 113(2): 611-619.
[22]
BoylanMT,QuailPH.Oatphytochromeisbiologicallyactivein transgenic tomatoes[J]. The Plant Cell, 1989, 1(8): 765-773.
[23]
Thiele A, Herold M, Lenk I, et al. Heterologous expression of arabidopsis phytochrome B in transgenic potato influences photosynthetic performance and tuber development[J]. Plant Physiology, 1999, 120(1): 73-82.