全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

川东北寒武纪盐盆成盐环境及其找钾意义

DOI: 10.3981/j.issn.1000-7857.2014.35.005, PP. 41-49

Keywords: 川东北,寒武系,溴氯系数,成盐环境,成钾条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

四川盆地东北部寒武系蒸发盐发育,该区钻孔见有高矿化度卤水,建南地区中寒武统覃家庙组沉积厚层石膏及石盐(建深1井),钻遇石盐累计厚度达120m,各盐层之间仅夹有薄层石膏,石盐单层最厚达80m(可能存在挤压增厚),结束了对于本区未达到石盐沉积的认识.对建深1井岩盐沉积段岩屑样品(石盐岩屑尚难识别其是原生石盐还是次生石盐)的溴氯系数进行分析得出,其溴氯系数值相对较低,一般为0.05~0.22.将水溶与酸溶的钾离子百分含量进行对比,酸溶的钾离子含量明显高于水溶钾离子含量,约为水溶的1.3~2.0倍,可能与石盐岩屑中存在较难溶于水的含钾矿物有关.川东北现有多口井钻遇寒武系高矿化度含(富)钾、溴、锂卤水,其含量最高可分别达4.6g/L、886mg/L和148mg/L,可进行综合利用.研究认为该区卤水的较高,Li+含量既不是完全由海水浓缩而成的沉积卤水,更不是溶滤盐类的结果,推测与该地区的水—岩作用、火山活动与深部来源的热水有关.综合分析本区的成钾条件和亚洲寒武系成盐成钾的广泛性,认为应关注及加强研究该区成盐找钾.

References

[1]  Wang S L, Zheng M P, Liu X F, et al. Distribution of Cambrian saltbearing basins in China and its significance for halite and potash finding[J]. Journal of Earth Science, 2013, 24(2): 212-233.
[2]  钱自强, 曲一华, 刘群. 钾盐矿床[M]. 北京: 地质出版社, 1994: 273. Qian Ziqiang, Qu Yihua, Liu Qun. Potash deposits[M]. Beijing: Geological Publishing House, 1994: 273.
[3]  王鸿祯. 从活动论观点论中国大地构造分区[J]. 地球科学, 1981(1): 42-66. Wang Hongzhen. Geotectonic units of China from the view- point of mobilism[J]. Earth Science-Journal of China University of Geosciences, 1981(1): 42-66.
[4]  王鸿祯, 杨森楠, 刘本培. 中国及邻区构造古地理和生物古地理[M]. 武汉: 中国地质大学出版社, 1989: 347. Wang Hongzhen, Yang Sennan, Liu Benpei. China and adjacent areas tectonic paleogeographic and paleobiogeographic[M]. Wuhan: China University of Geosciences Press, 1989: 347.
[5]  Valyashk M G. Basic chemical types of natural waters and the conditions producing them (in Russian)[J]. Record of Academy, 1955 (102): 315-318.
[6]  袁见齐, 霍承禹, 蔡克勤. 盐类矿床成因理论的新发展及其在矿床学 上的地位[J]. 矿床地质, 1982, 1(1): 15-24. Yuan Jianqi, Huo Chengyu, Cai Keqin. The advance s in the theory of the origin of salt deposits and their influence on the study of mineral deposits[J]. Mineral Deposits, 1982, 1(1): 15-24.
[7]  郑绵平, 齐文, 张永生. 中国钾盐地质资源现状与找钾方向初步分析[J]. 地质通报, 2006, 25(11): 1239-1246. Zheng Mianping, Qi Wen, Zhang Yongsheng. Present situation of potash resources and direction of potash search in China[J]. Geological Bulletin of China, 2006, 25(11): 1239-1246.
[8]  Richard A, Banks D A, Mercadier J, et al. An evaporated seawater origin for the ore- forming brines in unconformity- related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ37Cl analysis of fluid inclusions[J]. Geochimica et Cosmochimica Acta, 2011, 75(10): 2792- 2810.
[9]  Shouakar-Stash O, Alexeev S V, Frape S K, et al. Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia[J]. Applied Geochemistry, 2007, 22(3): 589-605.
[10]  Goncharenko O P. Potassic Salts in phanerozoic evaporite basins and specific features of salt deposition at the final stage of Halogenesis[J]. Lithology and Mineral Resources, 2006, 41(4): 378-388.
[11]  张正禄, 杨海平. 建深1井小井眼钻井技术[J]. 江汉石油科技, 2010, 20(1): 26-29. Zhang Zhenglu, Yang Haiping. The slim hole drilling technology of well jianshen 1[J]. Jianghan Shiyou Keji, 2010, 20(1): 26-29.
[12]  王淑丽, 郑绵平. 寒武系盐盆地的分布特征及其对中国成盐找钾的 意义[J]. 科技导报, 2013, 31(4): 17-27. Wang Shuli, Zheng Mianping. Distribution of Cambrian salt basin and its significance for halite and potash explorations in China[J]. Science & Technology Review, 2013, 31(4): 17-27.
[13]  McCaffrey M A, Lazar B, Holland H D. The evaporation path of seawater and the coprecipitation of Br (super-) and K (super+) with halite[J]. Journal of Sedimentary Research, 1987, 57(5): 928-937.
[14]  陈郁华. 黄海水25℃恒温蒸发时的析盐序列及某些微量元素的分布 规律[J]. 地质学报, 1983(4): 379-390. Chen Yuhua. Sequence of salt separation and regularity of some trace elements distribution during isothermal evaporation (25℃) of the Yellow sea[J]. Acta Geoligica Sinica-English Edition, 1983(4): 379- 390.
[15]  程怀德, 马海州, 谭红兵, 等. 钾盐矿床中Br的地球化学特征及研究 进展[J]. 矿物岩石地球化学通报, 2008, 27(4): 399-408. Cheng Huaide, Ma Haizhou, Tan Hongbing, et al. Geochemical characteristics of bromide in potassium deposits:review and research perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(4): 399-408.
[16]  许效松, 吴嘉陵. 云南勐野井钾盐矿床特征,微量元素地球化学及成 因探讨[J]. 中国地质科学院院报. 1983(1): 17-36. Xu Xiaosong, Wu Jialing. Potash deposits in Mengyejing, Yunnan: A study of certain characteristics, geochemistry of trace elements and genesis of the deposits[J]. Acta Geoscientica Sinica, 1983(1): 17-36.
[17]  林耀庭. 溴的地球化学习性及其在四川找钾工作中的应用[J]. 化工 矿产地质, 1995, 17(3): 175-181. Lin Yaoting. Geochemical behaviour of bromine and its application to prospection for potash resource in Sichuan[J]. Geology of Chemical Minerals, 1995, 17(3): 175-181.
[18]  Braitsch O. Salt deposits, their origin and composition[M]. Berlin: Springer-Verlage, 1971.
[19]  Alcal A F J, Custodio E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal[J]. Journal of Hydrology, 2008, 359(1): 189-207.
[20]  Cartwright I, Weaver T R, Fifield L K. Cl/Br ratios and environmental isotopes as indicators of recharge variability and groundwater flow: An example from the southeast Murray Basin, Australia[J]. Chemical Geology, 2006, 231(1): 38-56.
[21]  Fontes J C, Matray J M. Geochemistry and origin of formation brines from the Paris Basin, France: 1. Brines associated with Triassic salts[J]. Chemical Geology, 1993, 109(1-4): 149-175.
[22]  Gupta I, Wilson A M, Rostron B J. Cl/Br compositions as indicators of the origin of brines: Hydrogeologic simulations of the Alberta Basin, Canada[J]. Geological Society of America Bulletin, 2012, 124(1/2): 200-212.
[23]  Walter L M, Stueber A M, Huston T J. Br- Cl- Na systematics in Illinois basin fluids: Constraints on fluid origin and evolution[J]. Geology, 1990, 18(4): 315-318.
[24]  Heinrich C A, Bain J H C, Fardy J J, et al. Br/Cl geochemistry of hydrothermal brines associated with Proterozoic metasediment-hosted copper mineralization at Mount Isa, northern Australia[J]. Geochimica et Cosmochimica Acta, 1993, 57(13): 2991-3000.
[25]  王淑丽, 郑绵平, 焦建. 上扬子区寒武系蒸发岩沉积相及成钾潜力分 析[J]. 地质与勘探, 2012, 48(5): 947-958. Wang Shuli, Zheng Mianping, Jiao Jian. Sedimentary facies of the Cambrian evaporites in the upper Yangtze region and their potashforming potential[J]. Geology and Exploration, 2012, 48(5): 947-958.
[26]  Zheng M P, Yuan H R, Zhang Y S, et al. Regional distribution and prospects of potash in China[J]. Acta Geoligica Sinica-English Edition, 2011, 85(1): 17-50.
[27]  García- Veigas J, Cendón D I, Rosell L, et al. Salt deposition and brine evolution in the Granada Basin (Late Tortonian, SE Spain)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 369: 452- 465.
[28]  Skrzypek G, Dogramaci S, Grierson P F. Geochemical and hydrological processes controlling groundwater salinity of a large inland wetland of northwest Australia[J]. Chemical Geology, 2013, 357: 164-177.
[29]  Bottomley D J, Katz A, Chan L H, et al. The origin and evolution of Canadian Shield brines: Evaporation or freezing of seawater? New lithium isotope and geochemical evidence from the Slave craton[J]. Chemical Geology, 1999, 155(3/4): 295-320.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133