全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

磁流体靶向热疗对小鼠胰腺癌的作用

DOI: 10.3981/j.issn.1000-7857.2014.30.007, PP. 45-49

Keywords: 胰腺癌,磁流体,交变磁场,热疗

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探讨磁流体靶向热疗对小鼠胰腺癌的体外和动物治疗作用,利用前期建株的小鼠胰腺腺泡细胞癌株(MPC-83)分别进行体外热疗和动物实验.对MPC-83进行水浴热疗,分别调热疗温度为37、42、46、50℃,作用30min,显微镜观察细胞形态变化,流式细胞仪检测凋亡和坏死细胞百分比.选择4周龄雌性昆明种小鼠,建立MPC-83胰腺癌皮下肿瘤模型,观察磁流体热疗(46℃和50℃)对荷瘤小鼠的作用及其病理学变化.流式细胞仪检测46℃和50℃热疗细胞凋亡和坏死百分比分别为46.13%、89.33%,与对照组比较,差异具有统计学意义(P<0.05).热疗后第14天,46℃和50℃热疗组肿瘤生长率分别为-0.64±0.73和-0.72±0.79,与3个对照组比较,肿瘤生长受到明显抑制(P<0.05).病理学检查示磁流体对照组,在注射磁流体24h可见散在的磁性纳米微粒在一定范围内分布于肿瘤细胞之间,部分肿瘤细胞和吞噬细胞吞噬了磁性纳米微粒.热疗14d肿瘤完全消失的小鼠皮下组织未见肿瘤细胞,可见皮下残存磁性纳米微粒,被吞噬细胞吞噬.各对照组小鼠瘤体生长旺盛,细胞核浓染分裂,可见病理性核分裂像.磁流体靶向热疗可以达到杀伤胰腺癌细胞的理想温度,能有效抑制MPC-83胰腺癌生长,延长小鼠生存期.

References

[1]  Long J, Luo G P, Xiao Z W, et al. Cancer statistics: Current diagnosis and treatment of pancreatic cancer in Shanghai, China[J]. Cancer Letters, 2014, pii: S0304-3835(14)00030-5.
[2]  Wang L, Dong J, Ouyang W, et al. Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles[J]. Oncology Reports, 2012, 27(3): 719-726.
[3]  Jemal A, Siegel R, Xu J, et al. Cancer statistics, 2010[J]. CA: A Cancer Journal for Clinicians, 2010, 60(5): 277-300.
[4]  Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 2012, 62(1): 10-29.
[5]  Parchur A K, Ansari A A, Singh B P, et al. Enhanced luminescence of CaMoO4: Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: Cytotoxicity assessment on human liver cancer cells and mesenchymal stem cells[J]. Integrative Biology (Cambridge), 2014, 6(1): 53-64.
[6]  Taratula O, Dani R K, Schumann C, et al. Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells[J]. International Journal of Pharmaceutics, 2013, 458(1): 169-180.
[7]  Oliveira T R, Stauffer P R, Lee C T, et al. Magnetic fluid hyperthermia for bladder cancer: A preclinical dosimetry study[J]. International Journal of Hyperthermia, 2013, 29(8): 835-844.
[8]  Portela A, Vasconcelos M, Fernandes M H, et al. Highly focalised thermotherapy using a ferrimagnetic cement in the treatment of a melanoma mouse model by low temperature hyperthermia[J]. International Journal of Hyperthermia, 2013, 29(2): 121-132.
[9]  Kobayashi D, Kawai N, Sato S, et al. Thermotherapy using magnetic cationic liposomes powerfully suppresses prostate cancer bone metastasis in a novel rat model[J]. Prostate, 2013, 73(9): 913-922.
[10]  Jordan A. First clinical experience with magnetic field hyperthermia (MFH) at the university clinic charite in Berlin[C]. 5th International Conference on the Scientific and Clinical Application for Mangetic Carriers, 2004, May 20-22, Lyon, France.
[11]  Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron- oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme[J]. Journal of Neurooncology, 2011, 103(2): 317-324.
[12]  Johannsen M, Thiesen B, Wust P, et al. Magnetic nanoparticle hyperthermia for prostate cancer[J]. International Journal of Hyperthermia, 2010, 26(8): 790-795.
[13]  van Landeghem F K, Maier-Hauff K, Jordan A, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles[J]. Biomaterials, 2009, 30(1): 52-57.
[14]  Ouyang W, Gao F, Wang L, et al. Thermoseed hyperthermia treatment of mammary orthotopic transplantation tumors in rats and impact on immune function[J]. Oncology Reports, 2010, 24(4): 973-979.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133