全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

肿瘤热疗超声无创监测技术研究进展

DOI: 10.3981/j.issn.1000-7857.2014.30.002, PP. 19-24

Keywords: 肿瘤,热疗,超声,无论监测

Full-Text   Cite this paper   Add to My Lib

Abstract:

肿瘤热疗是用加热方式杀死癌细胞,已成为肿瘤治疗的一种重要手段.肿瘤热疗分为传统热疗(41~45℃)和热消融治疗(>60℃).在肿瘤热疗中,对治疗区组织温度及热凝固区进行无创测控是保证热疗安全和提高疗效的关键,本文综述肿瘤热疗超声无创测温及热凝固区检测技术的研究进展.超声无创测温主要基于声速和热膨胀、超声衰减系数、背向散射能量、B超图像纹理等参数的温度相关性.热凝固区超声检测主要基于超声组织定征技术,包括Nakagami统计模型、超声衰减、超声背向散射积分、超声弹性成像、组织散射子平均间距、次谐波低频声发射等.提出了肿瘤热疗超声无创监测技术的未来发展方向,包括监测精度验证方法的研究、针对组织个体差异自适应调整参数的研究、减少组织运动干扰的方法研究、多维多参数监测方法研究、实时计算技术的研究及肿瘤热疗实验数据共享中心的建立.

References

[1]  DeWall R J, Varghese T, Brace C L. Visualizing ex vivo radiofrequency and microwave ablation zones using electrode vibration elastography[J]. Medical physics, 2012, 39(11): 6692.
[2]  Zhou Z, Sheng L, Wu S, et al. Ultrasonic evaluation of microwaveinduced thermal lesions based on wavelet analysis of mean scatterer spacing[J]. Ultrasonics, 2013, 53(7): 1325-1331.
[3]  Winkler I, Adam D. Monitoring radio-frequency thermal ablation with ultrasound by low frequency acoustic emissions-In vitro and in vivo study[J]. Ultrasound in Medicine & Biology, 2011, 37(5): 755-767.
[4]  Lu M, Yu X, Li A, et al. Comparison of contrast enhanced ultrasound and contrast enhanced CT or MRI in monitoring percutaneous thermal ablation procedure in patients with hepatocellular carcinoma: A multicenter study in China[J]. Ultrasound in Medicine & Biology, 2007, 33 (11): 1736-1749.
[5]  Varghese T, Techavipoo U, Zagzebski J A, et al. Impact of gas bubbles generated during interstitial ablation on elastographic depiction of in vitro thermal lesions[J]. Journal of Ultrasound in Medicine, 2004, 23 (4): 535-544.
[6]  Seror O, Lepetit-Coiffé M, Le Bail B, et al. Real time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in the pig liver in vivo[J]. European Radiology, 2008, 18(2): 408-416.
[7]  Seo C H, Shi Y, Huang S W, et al. Thermal strain imaging: a review[J]. Interface Focus, 2011, 1(4): 649-664.
[8]  Liu H L, Li M L, Tsui P H, et al. A unified approach to combine temperature estimation and elastography for thermal lesion determination in focused ultrasound thermal therapy[J]. Physics in Medicine and Biology, 2011, 56(1): 169-186.
[9]  耿晓楠, 李锵, 崔博翔, 等. 超声温度影像与弹性成像监控组织射频消融[J]. 南方医科大学学报, 2013, 33(9): 1289-1294. GengXiaonan,LiQiang,TsuiPo-Hsiang,etal.Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities[J]. Journal of Southern Medical University, 2013, 33(9): 1289-1294.
[10]  Arthur R M, Straube W L, Trobaugh J W, et al. Non-invasive estimation of hyperthermia temperatures with ultrasound[J]. International Journal of Hyperthermia, 2005, 21(6): 589-600.
[11]  Liu D, Ebbini E S. Real-time 2-D temperature imaging using ultrasound[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(1): 12-16.
[12]  Huang C W, Lien D H, Chen B T, et al. Ultrasound thermal mapping based on a hybrid method combining cross- correlation and zerocrossing tracking[J]. Journal of the Acoustical Society of America, 2013, 134(2): 1530-1540.
[13]  Chen B T, Shieh J, Huang C W, et al. Ultrasound thermal mapping based on a hybrid method combining physical and statistical models[J]. Ultrasound in Medicine & Biology, 2014, 40(1): 115-129.
[14]  Sheng L, Zhou Z H, Wu S C, et al. Study frequency shift evaluation of ultrasound in heating fields of hyperthermia by AR model[J]. APCBEE Procedia, 2013, 7: 138-144.
[15]  Pouch A M, Cary T W, Schultz S M, et al. In vivo noninvasive temperature measurement by B-mode ultrasound imaging[J]. Journal of Ultrasound in Medicine, 2010, 29(11): 1595-1606.
[16]  Varghese T, Zagzebski J A, Chen Q, et al. Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary invivo results[J]. Ultrasound in Medicine & Biology, 2002, 28(3): 321- 329.
[17]  Daniels M J, Varghese T. Dynamic frame selection for in vivo ultrasound temperature estimation during radiofrequency ablation[J]. Physics in Medicine and Biology, 2010, 55(16): 4735-4753.
[18]  李硕, 任稆平, 杨春兰, 等. 基于超声回波时移测温方法的研究[J]. 中国医疗设备, 2009, 24(12): 12-14. Li Shuo, Ren Lüping, Yang Chunlan, et al. Study of thermometry based on time shift of ultrasound echo[J]. Journal Press of China Medical Devices, 2009, 24(12): 12-14.
[19]  Shung K K. Diagnostic ultrasound: Imaging and blood flow measurements[M]. Boca Raton: CRC Press, 2005.
[20]  Damianou C A, Sanghvi N T, Fry F J, et al. Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose[J]. Journal of the Acoustical Society of America, 1997, 102(1): 628-633.
[21]  Techavipoo U, Varghese T, Chen Q, et al. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses[J]. Journal of the Acoustical Society of America, 2004, 115(6): 2859-2865.
[22]  吴薇薇, 任稆平, 吴水才. 微波热疗组织超声衰减系数的温度相关性研究[J]. 中国医疗设备, 2010, 25(4): 15-17. Wu Weiwei, Ren Lüping, Wu Shuicai. Study on the temperature correlation of ultrasonic attenuation coefficient in microwave hyperthermia[J]. Journal Press of China Medical Devices, 2010, 25(4): 15-17.
[23]  Arthur R M, Basu D, Guo Y, et al. 3- D in vitro estimation of temperature using the change in backscattered ultrasonic energy[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2010, 57(8): 1724-1733.
[24]  Tsui P H, Chien Y T, Liu H L, et al. Using ultrasound CBE imaging without echo shift compensation for temperature estimation[J]. Ultrasonics, 2012, 52(7): 925-935.
[25]  Xia J, Li Q, Liu H L, et al. An approach for the visualization of temperature distribution in tissues according to changes in ultrasonic backscattered energy[J]. Computational and Mathematical Methods in Medicine, 2013: 682827.
[26]  Alvarenga A V, Teixeira C A, Ruano M G, et al. Influence of temperature variations on the entropy and correlation of the grey-level co-occurrence Matrix from B-Mode images[J]. Ultrasonics, 2010, 50(2): 290-293.
[27]  Yang C, Zhu H, Wu S, et al. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation[J]. Journal of Ultrasound in Medicine, 2010, 29(12): 1787-1799.
[28]  盛磊, 周著黄, 吴水才, 等. 热消融组织B超图像纹理特征参数温度相关性[J]. 北京工业大学学报, 2013, 39(8): 1275-1280. Sheng Lei, Zhou Zhuhuang, Wu Shuicai, et al. Correlations between B-mode ultrasound image texture features and tissue temperature in hyperthermia[J]. Journal of Beijing University of Technology, 2013, 39 (8): 1275-1280.
[29]  van Dongen K W A, Verweij M D. A feasibility study for non-invasive thermometry using non- linear ultrasound[J]. International Journal of Hyperthermia, 2011, 27(6): 612-624.
[30]  Tsui P H, Shu Y C, Chen W S, et al. Ultrasound temperature estimation based on probability variation of backscatter data[J]. Medical Physics, 2012, 39(5): 2369-2385.
[31]  Mulvana H, Stride E, Hajnal J V, et al. Temperature dependent behavior of ultrasound contrast agents[J]. Ultrasound in Medicine & Biology, 2010, 36(6): 925-934.
[32]  Sapin- de Brosses E, Gennisson J L, Pernot M, et al. Temperature dependence of the shear modulus of soft tissues assessed by ultrasound[J]. Physics in Medicine and Biology, 2010, 55(6): 1701-1718.
[33]  Arnal B, Pernot M, Tanter M. Monitoring of thermal therapy based on shear modulus changes: I. shear wave thermometry[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2011, 58(2): 369-378.
[34]  Ye G, Smith P P, Noble J A. Model-based ultrasound temperature visualization during and following HIFU exposure[J]. Ultrasound in Medicine & Biology, 2010, 36(2): 234-249.
[35]  Wang C Y, Geng X, Yeh T S, et al. Monitoring radiofrequency ablation with ultrasound Nakagami imaging[J]. Medical Physics, 2013, 40(7): 072901.
[36]  Zhang S, Zhou F, Wan M, et al. Feasibility of using Nakagami distribution in evaluating the formation of ultrasound-induced thermal lesions[J]. Journal of the Acoustical Society of America, 2012, 131(6):4836-4844.
[37]  Zhong H, Wan M X, Jiang Y F, et al. Monitoring imaging of lesions induced by high intensity focused ultrasound based on differential ultrasonic attenuation and integrated backscatter estimation[J]. Ultrasound in Medicine & Biology, 2007, 33(1): 82-94.
[38]  Zhang D, Zhang S, Wan M, et al. A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection[J]. Ultrasonics, 2011, 51(8): 857-869.
[39]  罗建文, 丁楚雄, 白净, 等. 超声弹性成像用于高强度聚焦超声损伤的检测[J]. 北京生物医学工程, 2006, 25(3): 235-239. Luo Jianwen, Ding Chuxiong, Bai Jing, et al. Ultrasound elastography applied to the detection of HIFU-induced lesions[J]. Beijing Biomedical Engineering, 2006, 25(3): 235-239.
[40]  Jiang J, Brace C, Andreano A, et al. Ultrasound-based relative elastic modulus imaging for visualizing thermal ablation zones in a porcine model[J]. Physics in Medicine and Biology, 2010, 55(8): 2281-2306.
[41]  Hou G Y, Luo J, Marquet F, et al. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): A 3-D finite-element-based framework with experimental validation[J]. Ultrasound in Medicine & Biology, 2011, 37(12): 2013- 2027.
[42]  Eyerly S A, Hsu S J, Agashe S H, et al. An in vitro assessment of acoustic radiation force impulse imaging for visualizing cardiac radiofrequency ablation lesions[J]. Journal of Cardiovascular Electrophysiology, 2010, 21(5): 557-563.
[43]  Arnal B, Pernot M, Tanter M. Monitoring of thermal therapy based on shear modulus changes: II. Shear wave imaging of thermal lesions[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2011, 58(8): 1603-1611.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133