全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

壳层增强人造硅酸盐骨料性能

DOI: 10.3981/j.issn.1000-7857.2014.25.003, PP. 26-31

Keywords: 人造硅酸盐骨料,壳层结构,轻骨料混凝土

Full-Text   Cite this paper   Add to My Lib

Abstract:

壳层人造硅酸盐骨料是具有结构梯度和成分梯度的复合结构,内核为基体,壳层为增强相。壳层和内核通过水化产物的相互渗透、相互搭接在界面处融为一个整体,界面结合牢固。对不同掺量的砂加气混凝土(SAAC)粉末和粉煤灰加气混凝土(FAAC)粉末制备的硅酸盐骨料进行对比,发现壳层结构可提高人造硅酸盐骨料的筒压强度,壳层结构对SAAC系列骨料的筒压强度提高幅度达49.72%~80.50%;对FAAC系列骨料的筒压强度提高幅度为15.30%~25.74%。壳层与内核的最佳质量比为125,此时壳层厚度为68.09μm,制备的壳层人造硅酸盐骨料的筒压强度比无壳时提高约25%。在砂浆基体相同,粗骨料体积份数相等的情况下,人造硅酸盐骨料混凝土比普通混凝土的抗压强度低6.38%,表观密度低20.74%,具有轻质高强的性能。

References

[1]  Shafigh P, Jumaat M Z, Mahmud H. Oil palm shell as a lightweight aggregate for production high strength lightweight concrete[J]. Construction and Building Materials, 2011, 25(4): 1848-1853.
[2]  Weigler H, Karl S. Structural lightweight aggregate concrete with reduced density-lightweight aggregate foamed concrete[J]. International Journal of Cement Composites and Lightweight Concrete, 1980, 2(2): 101-104.
[3]  Gunasekaran K, Kumar P S, Lakshmipathy M. Mechanical and bond properties of coconut shell concrete[J]. Construction and Building Materials, 2011, 25(1): 92-98.
[4]  谢宁. 真空挤压制备免烧型粉煤灰陶粒的工艺研究[D]. 太原: 太原理工大学, 2009. Xie Ning. Research on the process for making non-sintering fly ash ceramisite by vacuum extrsion[D]. Taiyuan: Taiyuan University of Technology, 2009.
[5]  Ma H, Cui C, Li X, et al. Study of high performance autoclaved shellaggregate from propylene oxide sludge[J]. Construction and Building Materials, 2011, 25(7): 3030-3037.
[6]  Ma H, Cui C, Li X, et al. Mechanical properties of autoclaved shellaggregate[ J]. Journal of Wuhan University of Technology: Materials Science Edition, 2011, 26(4): 723-729.
[7]  贺智敏, 龙广成, 谢友均, 等. 蒸养混凝土的毛细吸水特性研究[J]. 建筑材料学报, 2012, 15(2): 190-195. He Zhimin, Long Guangcheng, Xie Youjun, et al. Water sorptivity of steam curing concrete[J]. Journal of Building Materials, 2012, 15(2): 190-195.
[8]  葛勇, 孔丽娟, 张宝生, 等. 陶粒对混凝土结构及毛细吸水性能的影响[J]. 硅酸盐学报, 2008, 36 (7): 934-938. Ge Yong, Kong Lijuan, Zhang Baosheng, et al. Effects of aglite on structure and capillary water absorption property of concree[J]. Journal of the Chinese Ceramic Society, 2008, 36(7): 934-938.
[9]  Tandngw A, Lynsdalecl, Crippsj C. Aggregarecement chemical interactions[J]. Cement Concrete Research, 1998, 28(7): 1037-1048.
[10]  Stroeven P, Stroeven M. Reconsrructions by space of the interfacial transition zone[J]. Cement Concrent Composites, 2001, 23(2): 189-200.
[11]  陈伟. 轻集料-基体协同作用对混凝土性能的影响[D]. 重庆: 重庆大学, 2013. Chen Wei. Synergic acttion of lightweight aggregate-matrix on performance of concrete[D]. Chongqing: Chongqing University, 2013.
[12]  章金骏. 污泥烧制陶粒的技术路径与控制因子研究[D]. 杭州: 浙江大学, 2012. Zhang Jinjun. Characteristics and sintering technology of sewage sludge ceramsite[D]. Hangzhou: Zhejiang University, 2012.
[13]  王慧萍, 黄劲, 丁庆军, 等. 利用污泥和粉煤灰生产高强优质轻集料的研究[J]. 武汉理工大学学报: 材料科学版, 2004, 26(7): 38-40. Wang Huiping, Huang Jin, Ding Qingjun, et al. Study on high performance lightweight aggregate manufactured by sludge and fly ash[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2004, 26(7): 38-40.
[14]  邹志祥. 粉煤灰免烧轻集料的制备及其路基强度的实验研究[D]. 淮南: 安徽理工大学, 2007. Zou Zhixiang. Experimental study on preparation of coal ash lightweight aggregate and its roadbed strength tests[D]. Huainan: Anhui University of Science and Technology, 2007.
[15]  de Larrard F, Belloc A. The influence of aggregate on the compressive strength of normal and high-strength concrete[J]. ACI Materials Journal, 1997, 94(5): 417-424.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133