全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

玉米1,3,4-三磷酸肌醇5/6激酶ITPK家族基因的鉴定和分析

DOI: 10.3981/j.issn.1000-7857.2015.16.006, PP. 46-50

Keywords: 玉米,三磷酸肌醇5/6,激酶,保守结构域,表达模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

1,3,4-三磷酸肌醇5/6-激酶(ITPK)是一种在动物、植物、线虫中都比较保守的多功能酶,在生物信号传导及生长发育中起重要作用。为了充分研究玉米中ITPK家族基因系统分析、全生育期基因表达模式及逆境胁迫表达模式,利用玉米基因组数据库,通过生物信息学手段,鉴定玉米ITPK家族基因的全序列、定位和编码蛋白,通过序列比对进行进化和分类分析。利用玉米高通量芯片表达数据进行组织表达差异性、干旱胁迫和病害胁迫表达谱分析。结果表明,玉米基因组中含有6个ITPK家族基因,分布于玉米的4条染色体上。MEME保守结构域分析显示,ZmITPK1-5均含有3个保守的ATP-grasp-4结构域,ZmITPK6含有两个ATP-grasp-4保守结构域。进化树分析表明ZmITPK可分为3个亚家族。各个发育阶段中,多数成员在生殖器官或营养器官中均有较高的表达量,只有ZmITPK1在所有器官中表达量都不高。ZmITPK2和ZmITPK3基因受干旱胁迫处理诱导不同程度上调表达。而在生物胁迫条件下均无显著上调或下调表达。

References

[1]  Field J, Wilson M P, Mai Z, et al. An Entamoeba histolytica inositol 1, 3,4-trisphosphate 5/6-kinase has a novel 3-kinase activity[J]. Molecular and Biochemical Parasitology, 2000, 108(1): 119-123.
[2]  Vebrsky J W, Wilson M P, Kisseleva M V, et al. The synthesis of inosiotl hexakisphosphate[J]. Journal of Biological Chemistry. 2002, 277 (35): 31857-31862.
[3]  Wilson M P, Sun Y, Cao L, et al. Inositol 1,3,4-trisphosphate 5/6-kinase is a protein kinase that phosphorylates the transcription factors c-Jun and ATF-2[J]. Journal of Biological Chemistry, 2001, 276(44): 40998-41004.
[4]  Sun Y, Wilson M P, Majerus P W. Inositol 1,3,4-trisphosphate 5/6-kinase associates with the COP9 signalosome by binding to CSN1[J]. Journal of Biological Chemistry, 2002, 277(48): 45759-45764.
[5]  Mignery G A, Johnston P A, Sudhof T C. Mechanism of Ca2+ inhibition of inositol 1, 4, 5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor[J]. Journal of Biological Chemistry, 1992, 267(11): 7450-7455
[6]  Richardson A, Taylor C W. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization[J]. Journal of Biological Chemistry, 1993, 268(16): 11528-11533.
[7]  Hill T D, Dean N M, Boynton A L. Inositol 1,3,4,5-tetrakisphosphate induces Ca2+ sequestration in rat liver cells[J]. Science, 1988, 242(4882): 1176-1178.
[8]  Du H, Liu L, You L, et al. Characterization of an inositol 1,3,4-trisphosphate 5/6-kinase gene that is essential for drought and salt stress responses in rice[J]. Plant Molecular Biology, 2011, 77: 547-563.
[9]  Chen Q J, Niu X G, Chai M F, et al. Isolation of an Arabidopsis gene encoding Ins(l,3,4)P3 56/-kinase-like protein and involved in plant response to abiotic stresses[J]. Acta Botanica Sinica, 2003, 45: 211-218.
[10]  Larkin M A, Blackshields G, Brown N P, et al. Clustal W and clustal X version 2.0[J]. Bioinformatics, 2007, 23(21): 2947-2948.
[11]  Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology and Evolution, 2007, 24(8): 1596-1599.
[12]  Bailey T L, Boden M, Buske F A, et al. MEME SUITE: Tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37: 202-208.
[13]  Sekhon R S, Childs K L, Santoro N, et al. Transcriptional and metabolic analysis of senescence induced by preventing pollination in maize[J]. Plant Physiology, 2012, 159(4): 1730-1744.
[14]  Sekhon R S, Lin H, Childs K L, et al. Genome-wide atlas of transcription during maize development[J]. Plant Journal, 2011, 66(4): 553-563.
[15]  Zheng J, Fu J, Gou M, et al. Genome-wide transcriptome analysis of two maize inbred lines under drought stress[J]. Plant Molecular Biology, 2010, 72(4-5): 407-421.
[16]  Ghareeb H, Becker A, Iven T, et al. Sporisorium reilianum infection changes inflorescence and branching architectures of maize[J]. Plant Physiology, 2011, 156(4): 2037-2052.
[17]  Voll L M, Horst R J, Voitsik A M, et al. Common motifs in the response of cereal primary metabolism to fungal pathogens are not based on similar transcriptional reprogramming[J]. Front Plant Science, 2011, 2: 39.
[18]  Pla M, Vilardell J, Guiltinan M J, et.al. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28[J]. Plant Molecular Biology, 1993, 21(2): 259-266.
[19]  Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends Plant Science, 2005, 10(2): 88-94.
[20]  Narusaka Y, Nakashima K, Shinwari Z K, et.al. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses[J]. Plant Journal, 2003, 34(2): 137-148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133