全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

构建微型定位导航授时体系,改变PNT格局

DOI: 10.3981/j.issn.1000-7857.2015.12.019, PP. 116-119

Full-Text   Cite this paper   Add to My Lib

Abstract:

定位导航授时(PNT)是关乎国家战略的军民两用技术。传统的卫星导航系统易受干扰和遮挡,惯性导航存在误差积累问题,其提供的PNT服务均存在固有缺陷。以MEMS技术为基础的芯片原子钟和微惯性测量组合,与卫星导航技术相结合,形成微型定位导航授时单元。微型定位导航授时单元以精确的芯片原子钟为时钟基础,发播定位导航授时信号,搭建PNT网络。微型定位导航授时单元可以由微纳卫星、无人机等载体携带,数量可选、布局能控、组网灵活,克服了传统PNT存在的问题,改变PNT格局。

References

[1]  胡安平, 梁尔冰. PNT 体系研究及验证[J]. 现代导航, 2012(6): 395- 400. Hu Anping, Ling Erbing. PNT architecture study and test[J]. Modern Navigation, 2012(6): 395-400.
[2]  廖春发. 美国PNT 体系结构的现状与发展趋势[J]. 卫星应用, 2011 (2): 69-76. Liao Chunfa. Current situation and development trend of PNT system structure USA[J]. Satellite Application, 2011(2): 69-76.
[3]  曹冲. 全球导航卫星系统体系化发展趋势探讨[J]. 导航定位学报, 2013(1): 72-77. Cao Chong. Discussion on the development trend of Navigation Satellite System Global[J]. Journal of Navigation and Positioning, 2013(1): 72-77.
[4]  谢钢. 全球导航卫星系统原理——GPS、格洛纳斯和伽利略系统[M]. 北京: 电子工业出版社, 2013. Xie Gang. Principles of GNSS: GPS, GLONASS, and Galileo[M]. Beijing: Publishing House of Electronics Industry, 2013.
[5]  Kaplan E D, Hegarty C J. Understanding GPS: Principles and application [M]. 2nd ed. Norwood, MA: Artech House, 2006.
[6]  Gao G X. DME/TACAN interference and its migration in L5/E5 bands [C]. ION Global Navigation Satellite Systems Conference 2007, Fort Worth, Texas, September 25-28, 2007.
[7]  Qi H, Moore J B. Direct Kalman filtering approach for GPS/INS integration [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (2): 687-693.
[8]  Rollo R. Military & Government-Navigation in a Nugget-SPAWAR leverages new chip-scale atomic clock—The first GPS receiver in the world to incorporate a chip-scale atomic clock will transform future[J]. GPS World, 2007, 18(9): 56-59.
[9]  Lutwak R. Micro- technology for positioning, navigation, and timing towards PNT everywhere and always[C]. 2014 International Symposium on Inertial Sensors and Systems (ISISS), Laguna Beach, CA, USA, February 25-26, 2014.
[10]  Shkel A M. Precision navigation and timing enabled by microtechnology: Are we there yet[C]. IEEE Sensors 2010 Conference, Waikoloa, USA, November 1-4, 2010.
[11]  Fisher K A, Raquet J F. Precision position, navigation, and timing without the global positioning system[J]. Air & Space Power Journal, 2011, 25(2): 24-33.
[12]  Groves P D. The PNT boom: Future trends in integrated navigation[J]. Inside GNSS, 2013, 8(2): 44-49.
[13]  文苏丽, 张国庆. 美国GPS 受限条件下导航定位技术的新发展[J]. 战术导弹技术, 2014(6): 016. Wen Suli, Zhang Guoqing. The technology progress of PNT in GPS limited conditions[J]. Tactical Missile Technology, 2014(6): 016.
[14]  李冀. 国外提升卫星信号在拒止环境下导航定位能力的新技术[J]. 导航定位学报, 2013, 1(2): 55-59. Li Ji. New technologies developed for promoting PNT capability in GPS denial environment[J]. Journal of Navigation and Positioning, 2013, 1(2): 55-59.
[15]  杨俊, 单庆晓. 卫星授时原理与应用[M]. 北京: 国防工业出版社, 2013: 130-133. Yang Jun, Shan Qingxiao. Satellite timing principle and application [M]. Beijing: National Defend Industy Press, 2013: 130-133.
[16]  王义遒, 王吉庆, 傅济时, 等. 量子频标原理[M]. 北京: 科学出版社, 1986: 236-253. Wang Yiqiu, Wang Jiqing, Fu Jishi, et al. The principle of quantum frequency standard[M]. Beijing: Science Press, 1986: 236-253.
[17]  Microsemi Corporation. QuantumTM SA.45s chip scale atomic clock [EB/OL].[2015-03-15]. http://www.microsemi.com/products/timingsynchronization- systems/embedded- timing- solutions/components/sa- 45s-chip-scale-atomic-clock.
[18]  Titterton D, Weston J L. Strapdown inertial navigation technology[M]. London: Institution of Engineering & Technology, 2004.
[19]  郭丽红, 李洲. 美国国家星基定位、导航与授时概况[J]. 国际太空, 2013(4): 50-52. Guo Lihong, Li Zhou. The general situation of America national satellite based positioning, navigation and timing[J]. Space International, 2013(4): 50-52.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133