全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

材料基因组——材料研发新模式

DOI: 10.3981/j.issn.1000-7857.2015.10.001, PP. 13-19

Keywords: 材料基因组,材料基因组计划,高通量材料实验,高通量材料计算,材料数据库

Full-Text   Cite this paper   Add to My Lib

Abstract:

依赖于科学直觉与试错的传统材料研究方法日益成为社会发展与技术进步的瓶颈。革新材料研发方法、加速材料从研究到应用的进程成为世界各国共同的需求。作为"先进制造伙伴计划"(AdvancedManufacturingPartnership,AMP)的重要组成部分,美国总统奥巴马在2011年6月宣布了"材料基因组计划"(MaterialsGenomeInitiative,MGI),通过整合材料计算、高通量实验和数据库,全面提高先进材料从发现到应用的速度,降低成本。MGI提出了材料研发的崭新模式,为美国发展高端制造业,保持并强化其在核心科技领域的优势奠定了创新基础。中国材料科学界在1999年6月召开主题为"发现和优化新材料的集成组合方法"的第118次香山科学会议,寻找加速发现新材料的有效途径。2011年12月,中国科学院和中国工程院主办主题为"材料科学系统工程"的第S14次香山科学会议,研究中国应对MGI的策略,并在随后3年中,多次组织以材料基因组计划为主题的研讨会、报告会,使得中国材料界对材料基因组技术的认识不断深入,形成基本共识。2014年,中国科学院和中国工程院分别向国务院提交咨询报告,建议尽快启动实施中国材料基因组计划。本文简要介绍材料基因组计划的主要内容、技术内涵、科学本质、国内外最新动向及其未来发展趋势,并根据中国的实际需求特点与现有条件,对实施中国版材料基因组计划的发展战略、技术路线、政策措施等提出建议。

References

[1]  王兴艳, 宋显珠. 我国新材料产业自主创新能力建设反思[J]. 新材料产业, 2014(4): 60-62. Wang Xingyan, Song Xianzhu. Thoughts on building the innovation capability for the chinese materials industry[J]. Advanced Materials Industry, 2014(4): 60-62.
[2]  Holdren J P. Materials genome initiative for global competitiveness[R]. Washington, DC: NSTC, 2011.
[3]  Holdren J P. Report on the president on ensuring american leadership in advanced manufacturing[R]. Washington, DC: PCAST, 2011.
[4]  Holdren J P. A national strategic plan for advanced manufacturing[R]. Washington, DC: NSTC, 2014.
[5]  刘梓葵. 关于材料基因组技术的基本观点与展望[J]. 科学通报, 2013, 58(35): 3618-3622. Liu Zikui. Perspective on materials genome[J]. Chinese Science Bulletin, 2013, 58(35): 3618-3622.
[6]  Allison J, Collins P, Spanos G. Proceedings of the 1st World Congress on Integrated Computational Materials Engineering[C]. Hoboken: John Wiley & Sons, Inc, 2011.
[7]  The White House: Office of Science and Technology Policy. Fact sheet: The materials genome initiative-three years of progress[R]. Washington, DC: OSTP, 2014.
[8]  Accelerated metallurgy: The accelerated discovery of alloy formulations using combinatorial principles[EB/OL]. [2015- 01- 31]. http://www. accmet-project.eu/index.html.
[9]  Jarvis D. Metallurgy Europe: A renaissance programme for 2012-2022[R]. Strasbourg: EFS, 2012.
[10]  NIMS Materials Database[EB/OL]. [2014-12-11]. http://mits.nims.go. jp/index_en.html.
[11]  JSTDatabase[EB/OL].[2012-10-11].http://sti.jst.go.jp/en/database.html.
[12]  ULNANOTECH & Intermolecular[EB/OL]. [2013- 09- 29]. http:// www.ulnanotech.com/en/component/k2/item/62-intermolecular.html.
[13]  Manufacturers are increasingly working with new, game-changing ingredients[N]. The Economist. 2012-04-21.
[14]  Potyrailo R, Rajan K, Stoewe K, et al. Combinatorial and high-throughput screening of materials libraries: Review of state of the art[J]. ACS Combinatorial Science, 2011, 13(6): 579-633.
[15]  Yildirim T. Strong coupling of the Fe-spin state and the As-As hybridization in Iron- pnictide superconductors from first- principle calculations[J]. Physics Review Letters, 2009, 102(3): 037003.
[16]  Evans W J, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination[J]. Applied Physics Letters, 2010, 96(20): 203112.
[17]  Kim S M, Al-Rub R K A. Meso-scale computational modeling of the plastic- damage response of cementitious composites[J]. Cement and Concrete Research, 2011, 41(3): 339-358.
[18]  Curtarolo S, Hart G L W, Nardelli M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3): 191-201.
[19]  Xiang X D. High throughput synthesis and screening for functional materials[J]. Applied Surface Science, 2004, 223(1): 54-61.
[20]  Yoo Y K, Xiang X D. Combinatorial Material Preparation[J]. Journal of Physics: Condensed Matter, 2002, 14(2): R49.
[21]  Zhao J C. Combinatorial approaches as effective tools in the study of phase diagrams and composition- structure- property relationships[J]. Progress in Materials Science, 2006, 51(5): 557-631.
[22]  Rajan K. Informatics for materials science and engineering: Datadriven discovery for accelerated experimentation and application[M]. Oxford: Butterworth-Heinemann, 2013.
[23]  Krein M P, Natarajan B, Schadler L S, et al. Development of materials informatics tools and infrastructure to enable high throughput materials design[C]//MRS Proceedings, Cambridge: Cambridge University Press, 2012.
[24]  Xiang X D, Sun X, Bricno G, et al. Combinatorial approach to materials discovery[J]. Science, 1995, 268(5218): 1738-1740.
[25]  Geers M G D, Kouznetsova V G, Brekelmans W A M. Multi-scale computational homogenization: Trends and challenges[J]. Journal of Computational and Applied Mathematics, 2010, 234(7): 2175-2182.
[26]  Zhao J C, Jackson M R, Peluso L A, et al. A diffusion multiple approach for the accelerated design of structural materials[J]. MRS Bulletin, 2002, 27(4): 324-329.
[27]  中国科学院北京综合研究中心. 北京怀柔北京综合研究中心大科学装置简介[EB/OL]. 2011. http://www.basic.cas.cn/dkxzz/.
[28]  上海应用物理研究所. 上海同步辐射光源概况[EB/OL]. 2006. http:// ssrf.sinap.ac.cn/1/jianjie.htm.
[29]  中国科学院. 中国散裂中子源工程概况[EB/OL]. 2007. http://csns. ihep.ac.cn/intro/intro1.html.
[30]  中国科学院云计算产业技术创新与育成中心. 中国科学院云计算中心简介[EB/OL]. 2012. http://www.casc.ac.cn/Trend/184.html.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133