王兴艳, 宋显珠. 我国新材料产业自主创新能力建设反思[J]. 新材料产业, 2014(4): 60-62. Wang Xingyan, Song Xianzhu. Thoughts on building the innovation capability for the chinese materials industry[J]. Advanced Materials Industry, 2014(4): 60-62.
[2]
Holdren J P. Materials genome initiative for global competitiveness[R]. Washington, DC: NSTC, 2011.
[3]
Holdren J P. Report on the president on ensuring american leadership in advanced manufacturing[R]. Washington, DC: PCAST, 2011.
[4]
Holdren J P. A national strategic plan for advanced manufacturing[R]. Washington, DC: NSTC, 2014.
[5]
刘梓葵. 关于材料基因组技术的基本观点与展望[J]. 科学通报, 2013, 58(35): 3618-3622. Liu Zikui. Perspective on materials genome[J]. Chinese Science Bulletin, 2013, 58(35): 3618-3622.
[6]
Allison J, Collins P, Spanos G. Proceedings of the 1st World Congress on Integrated Computational Materials Engineering[C]. Hoboken: John Wiley & Sons, Inc, 2011.
[7]
The White House: Office of Science and Technology Policy. Fact sheet: The materials genome initiative-three years of progress[R]. Washington, DC: OSTP, 2014.
[8]
Accelerated metallurgy: The accelerated discovery of alloy formulations using combinatorial principles[EB/OL]. [2015- 01- 31]. http://www. accmet-project.eu/index.html.
[9]
Jarvis D. Metallurgy Europe: A renaissance programme for 2012-2022[R]. Strasbourg: EFS, 2012.
Manufacturers are increasingly working with new, game-changing ingredients[N]. The Economist. 2012-04-21.
[14]
Potyrailo R, Rajan K, Stoewe K, et al. Combinatorial and high-throughput screening of materials libraries: Review of state of the art[J]. ACS Combinatorial Science, 2011, 13(6): 579-633.
[15]
Yildirim T. Strong coupling of the Fe-spin state and the As-As hybridization in Iron- pnictide superconductors from first- principle calculations[J]. Physics Review Letters, 2009, 102(3): 037003.
[16]
Evans W J, Hu L, Keblinski P. Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination[J]. Applied Physics Letters, 2010, 96(20): 203112.
[17]
Kim S M, Al-Rub R K A. Meso-scale computational modeling of the plastic- damage response of cementitious composites[J]. Cement and Concrete Research, 2011, 41(3): 339-358.
[18]
Curtarolo S, Hart G L W, Nardelli M B, et al. The high-throughput highway to computational materials design[J]. Nature Materials, 2013, 12(3): 191-201.
[19]
Xiang X D. High throughput synthesis and screening for functional materials[J]. Applied Surface Science, 2004, 223(1): 54-61.
[20]
Yoo Y K, Xiang X D. Combinatorial Material Preparation[J]. Journal of Physics: Condensed Matter, 2002, 14(2): R49.
[21]
Zhao J C. Combinatorial approaches as effective tools in the study of phase diagrams and composition- structure- property relationships[J]. Progress in Materials Science, 2006, 51(5): 557-631.
[22]
Rajan K. Informatics for materials science and engineering: Datadriven discovery for accelerated experimentation and application[M]. Oxford: Butterworth-Heinemann, 2013.
[23]
Krein M P, Natarajan B, Schadler L S, et al. Development of materials informatics tools and infrastructure to enable high throughput materials design[C]//MRS Proceedings, Cambridge: Cambridge University Press, 2012.
[24]
Xiang X D, Sun X, Bricno G, et al. Combinatorial approach to materials discovery[J]. Science, 1995, 268(5218): 1738-1740.
[25]
Geers M G D, Kouznetsova V G, Brekelmans W A M. Multi-scale computational homogenization: Trends and challenges[J]. Journal of Computational and Applied Mathematics, 2010, 234(7): 2175-2182.
[26]
Zhao J C, Jackson M R, Peluso L A, et al. A diffusion multiple approach for the accelerated design of structural materials[J]. MRS Bulletin, 2002, 27(4): 324-329.