全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

脑组织液测量技术与研究现状

DOI: 10.3981/j.issn.1000-7857.2015.08.017, PP. 101-105

Keywords: 脑组织液,引流,测量技术

Full-Text   Cite this paper   Add to My Lib

Abstract:

脑组织液(ISF)是脑细胞生存微环境内最重要的组成要素,对中枢神经系统稳态的维持具有重要意义。由于以往研究手段与技术方法的限制,人们对ISF的产生、代谢与引流过程的认识一直存在争议。近期,测量技术的进步为脑ISF研究提供了全新的解剖和生理参数指标,辅以分子成像技术,脑ISF的生理特性及其与其内的脑神经网络的关系研究已成为可能。本文在总结ISF测量技术的基础上,对ISF的来源、流动、引流途径等相关生理与病理研究进展进行综述。

References

[1]  Weller R O, Djuanda E, Yow H Y, et al. Lymphatic drainage of the brain and the pathophysiology of neurological disease[J]. Acta Neuropathologica, 2009, 117(1): 1-14.
[2]  Abbott N J. Blood-brain barrier structure and function and the challenges for cns drug delivery[J]. Journal of Inherited Metabolic Disease, 2013, 36 (3): 437-449.
[3]  Chen K C, Hoistad M, Kehr J, et al. Quantitative dual-probe microdialysis: Mathematical model and analysis[J]. Journal of Neurochemistry, 2002, 81 (1): 94-107.
[4]  Bobo R H, Laske D W, Akbasak A, et al. Convection-enhanced delivery of macromolecules in the brain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(6): 2076-2080.
[5]  Han H, Xia Z, Chen H, et al. Simple diffusion delivery via brain interstitial route for the treatment of cerebral ischemia[J]. Science China Life Sciences, 2011, 54(3): 235-239.
[6]  Thorne R G, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(14): 5567-5572.
[7]  Tao L. Light scattering in brain slices measured with a photon counting fiber optic system[J]. Journal of Neuroscience Methods, 2000, 101(1): 19- 29.
[8]  Michael A C, Borland L M, Mitala J J, et al. Theory for the impact of basal turnover on dopamine clearance kinetics in the rat striatum after medial forebrain bundle stimulation and pressure ejection[J]. Journal of Neurochemistry, 2005, 94(5): 1202-1211.
[9]  Szentistvanyi I, Patlak C S, Ellis R A, et al. Drainage of interstitial fluid from different regions of rat brain[J]. The American Journal of Physiology, 1984, 246(6 Pt 2): F835-844.
[10]  Sirovskiy E, Kornienko V, Moshkin A, et al. Vpf and interstitial fluid pressure in brain oedema[J]. Acta Neurochirurgica Supplementum, 1990, 51: 411-413.
[11]  Liu X, Van Natta K, Yeo H, et al. Unbound drug concentration in brain homogenate and cerebral spinal fluid at steady state as a surrogate for unbound concentration in brain interstitial fluid[J]. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 2009, 37(4): 787- 793.
[12]  Wiig H, Reed R K, Aukland K. Micropuncture measurement of interstitial fluid pressure in rat subcutis and skeletal muscle: Comparison to wickin- needle technique[J]. Microvascular Research, 1981, 21(3): 308-319.
[13]  Zhang M, Mao L. Enzyme-based amperometric biosensors for continuous and on- line monitoring of cerebral extracellular microdialysate[J]. Frontiers in Bioscience: A Journal and Virtual Library, 2005, 10(1): 345-352.
[14]  Geer C P, Grossman S A. Interstitial fluid flow along white matter tracts: A potentially important mechanism for the dissemination of primary brain tumors[J]. Journal of Neuro-oncology, 1997, 32(3): 193-201.
[15]  Preston S D, Steart P V, Wilkinson A, et al. Capillary and arterial cerebral amyloid angiopathy in alzheimer's disease: Defining the perivascular route for the elimination of amyloid beta from the human brain[J]. Neuropathology and Applied Neurobiology, 2003, 29(2): 106- 117.
[16]  Han H, Li K, Yan J, et al. An in vivo study with an mri tracer method reveals the biophysical properties of interstitial fluid in the rat brain[J]. Science China Life Sciences, 2012, 55(9): 782-787.
[17]  Xu F, Han H, Zhang H, et al. Quantification of gd-dtpa concentration in neuroimaging using t(1)3d mp- rage sequence at 3.0 t[J]. Magnetic Resonance Imaging, 2011(6), 29: 827-834.
[18]  Li K, Han H, Zhu K, et al. Real- time magnetic resonance imaging visualization and quantitative assessment of diffusion in the cerebral extracellular space of c6 glioma-bearing rats[J]. Neuroscience Letters, 2013, 543: 84-89.
[19]  Han H, Shi C, Fu Y, et al. A novel mri tracer- based method for measuring water diffusion in the extracellular space of the rat brain[J]. IEEE Journal of Biomedical and Health Informatics, 2014, 18(3): 978- 983.
[20]  Liu B, Bai X Z, Zhou F G, et al. Mutual information based threedimensional registration of rat brain magnetic resonance imaging timeseries[ J]. Computers & Electrical Engineering, 2013, 39(5): 1473-1484.
[21]  Iliff J J, Wang M, Liao Y, et al. A paravascular pathway facilitates csf flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta[J]. Science Translational Medicine, 2012, 4: 147ra111.
[22]  Rapoport S I. Blood-brain barrier in physiology and medicine[M]. New York: Raven Press, 1976.
[23]  Davson H, Segal M B. Physiology of the csf and blood-brain barriers[M]. Boca Raton: CRC Press, 1995.
[24]  Barua N U, Woolley M, Bienemann A S, et al. Intermittent convectionenhanced delivery to the brain through a novel transcutaneous boneanchored port[J]. Journal of Neuroscience Methods, 2013, 214(2): 223- 232.
[25]  Abbott N J. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology[J]. Neurochemistry International, 2004, 45 (4): 545-552.
[26]  Cserr H F. Physiology of the choroid plexus[J]. Physiological Reviews, 1971, 51(2): 273-311.
[27]  Weller R O, Galea I, Carare R O, et al. Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis[J]. Pathophysiology, 2010, 17(4): 295- 306.
[28]  Carare R O, Bernardes-Silva M, Newman T A, et al. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: Significance for cerebral amyloid angiopathy and neuroimmunology[J]. Neuropathology and Applied Neurobiology, 2008, 34(2): 131-144.
[29]  Shielke G P, Betz A L. Electrolyte transport[M]//Physiology and Pharmacology of the Blood-Brain Barrier. Berlin: Springer, 1992, 221- 243.
[30]  Tsurugizawa T, Ciobanu L, Le Bihan D. Water diffusion in brain cortex closely tracks underlying neuronal activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013 (28), 110: 11636-11641.
[31]  Sykova E, Mazel T, Simonova Z. Diffusion constraints and neuron-glia interaction during aging[J]. Experimental Gerontology, 1998, 33(7- 8): 837-851.
[32]  Grisar T. Glial and neuronal Na +-K+ pump in epilepsy[J]. Annals of Neurology, 1984, 16(Suppl1): S128-134.
[33]  Simpson I A, Carruthers A, Vannucci S J. Supply and demand in cerebral energy metabolism: The role of nutrient transporters[J]. Journal of Cerebral Blood Flow and Metabolism, 2007, 27(11): 1766-1791.
[34]  Suh M, Choi- Kwon S, Kim J S. Sleep disturbances after cerebral infarction: Role of depression and fatigue[J]. Journal of Stroke and Cerebrovascular Diseases, 2014, 23(7): 1949-1955.
[35]  Rennels M L, Gregory T F, Blaumanis O R, et al. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space[J]. Brain Research, 1985, 326(1): 47-63.
[36]  Rennels M L, Blaumanis O R, Grady P A. Rapid solute transport throughout the brain via paravascular fluid pathways[J]. Advances in Neurology, 1990, 52: 431-439.
[37]  Iliff J J, Wang M, Zeppenfeld D M, et al. Cerebral arterial pulsation drives paravascular csf-interstitial fluid exchange in the murine brain[J]. The Journal of Neuroscience, 2013, 33(46): 18190-18199.
[38]  Cserr H F, Patlak C S. Secretion and bulk flow of interstitial fluid[M]// Physiology and Pharmacology of the Blood- Brain Barrier. Berlin: Springer, 1992, 245-261.
[39]  Sykova E, Nicholson C. Diffusion in brain extracellular space[J]. Physiological Reviews, 2008, 88(4): 1277-1340.
[40]  Weller R O, Subash M, Preston S D, et al. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and alzheimer's disease[J]. Brain Pathology, 2008, 18(2): 253-266.
[41]  Arbel-Ornath M, Hudry E, Eikermann-Haerter K, et al. Interstitial fluid drainage is impaired in ischemic stroke and alzheimer's disease mouse models[J]. Acta Neuropathologica, 2013, 126(3): 353-364.
[42]  Jose D A, Luciano P, Vicente V, et al. Role of catheter's position for final results in intrathecal drug delivery. Analysis based on csf dynamics and specific drugs profiles[J]. The Korean Journal of Pain, 2013, 26(4): 336-346.
[43]  Agnati L F, Guidolin D, Leo G, et al. Receptor-receptor interactions: A novel concept in brain integration[J]. Progress in Neurobiology, 2010, 90: 157-175.
[44]  Proescholdt M G, Hutto B, Brady L S, et al. Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14C]inulin in rat[J]. Neuroscience, 2000, 95(2): 577-592.
[45]  Levick J R, Michel C C. Microvascular fluid exchange and the revised starling principle[J]. Cardiovascular Research, 2010, 87(2): 198-210.
[46]  Bargmann C I, Marder E. From the connectome to brain function[J]. Nature Methods, 2013, 10(6): 483-490.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133