全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

组蛋白甲基化的阅读器识别机制研究进展

DOI: 10.3981/j.issn.1000-7857.2015.08.016, PP. 94-100

Keywords: 组蛋白阅读器,组蛋白甲基化,表观遗传调控,组合识别,修饰对话,晶体结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

组蛋白甲基化修饰对遗传信息解读有着重要影响,是表观遗传调控的主要机制之一。组蛋白甲基化可以被一类称作"阅读器"的结构域所特异识别并介导下游生物学事件。本文综述了目前已知的组蛋白甲基化阅读器(包括"皇室家族"成员、PHD锌指及BAH等结构域)的结构特征及其对于甲基化修饰位点和程度特异性识别的分子基础。另外,探讨了表观遗传修饰调控中的组合识别、修饰对话等概念与机制。

References

[1]  Strahl B D, Allis C D. The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41-45.
[2]  Jenuwein T, Allis C D. Translating the histone code [J]. Science, 2001, 293(5532): 1074-1080.
[3]  Taverna S D, Li H, Ruthenburg A J, et al. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers[J]. Nature Structural & Molecular Biology, 2007, 14(11): 1025-1040.
[4]  Maurer- Stroh S, Dickens N J, Hughes- Davies L, et al. The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains[J]. Trends in Biochemical Sciences, 2003, 28(2): 69-74.
[5]  Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain[J]. Nature, 2001, 410(6824): 120-124.
[6]  Nielsen P R, Nietlispach D, Mott H R, et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9[J]. Nature, 2002, 416(6876): 103-107.
[7]  Flanagan J F, Mi L Z, Chruszcz M, et al. Double chromodomains cooperate to recognize the methylated histone H3 tail[J]. Nature, 2005, 438(7071): 1181-1185.
[8]  Chen C, Nott T J, Jin J, et al. Deciphering arginine methylation: Tudor tells the tale[J]. Nature Reviews Molecular Cell Biology, 2011, 12(10): 629-642.
[9]  Huang Y, Fang J, Bedford M T, et al. Recognition of histone H3 lysine- 4 methylation by the double tudor domain of JMJD2A[J]. Science, 2006; 312(5774): 748-751.
[10]  Botuyan M V, Lee J, Ward I M, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair[J]. Cell, 2006, 127(7): 1361-1373.
[11]  Wu H, Zeng H, Lam R, et al. Structural and histone binding ability characterizations of human PWWP domains[J]. Plos One, 2011, 6(6): e18919.
[12]  Li H, Fischle W, Wang W, et al. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger[J]. Molecular Cell, 2007, 28(4): 677-691.
[13]  Li Y Y, Li H T. Many keys to push: Diversifying the 'readership' of plant homeodomain fingers[J]. Acta Biochimica et Biophysica Sinica, 2012, 44(1): 28-39.
[14]  Iwase S, Xiang B, Ghosh S, et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mentalretardation syndrome[J]. Nature Structural & Molecular Biology, 2011, 18(7): 769-776.
[15]  Collins R E, Northrop J P, Horton J R, et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules[J]. Nature Structural & Molecular Biology, 2008, 15(3): 245-250.
[16]  Kuo A J, Song J K, Cheung P, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome[J]. Nature, 2012, 484(7392): 115-119.
[17]  Migliori V, Muller J, Phalke S, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance[J]. Nature Structural & Molecular Biology, 2012, 19(2): 136-144.
[18]  Li H T, Ilin S, Wang W K, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF[J]. Nature, 2006, 442(7098): 91-95.
[19]  Lan F, Collins R E, De Cegli R, et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression[J]. Nature, 2007, 448(7154): 718-722.
[20]  Fiedler M, Sanchez- Barrena M J, Nekrasov M, et al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex[J]. Molecular Cell, 2008; 30(4): 507-518.
[21]  Min J R, Allali-Hassani A, Nady N, et al. L3MBTL1 recognition of mono- and dimethylated histones[J]. Nature Structural & Molecular Biology, 2007, 14(12): 1229-1230.
[22]  Vakoc C R, Sachdeva M M, Wang H X, et al. Profile of histone lysine methylation across transcribed mammalian chromatin[J]. Nature Structural & Molecular Biology, 2006, 26(24): 9185-9195.
[23]  Bian C B, Xu C, Ruan J B, et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation[J]. The EMBO Journal, 2011, 30(14): 2829-2842.
[24]  Xi Q R, Wang Z X, Zaromytidou A I, et al. A poised chromatin platform for TGF-beta access to master regulators[J]. Cell, 2011, 147 (7): 1511-1524.
[25]  Wen H, Li Y Y, Xi Y X, et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression[J]. Nature, 2014, 508(7495): 263-268.
[26]  Su X N, Zhu G X, Ding X Z, et al. Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1 [J]. Genes & Development, 2014, 28(6): 622-636.
[27]  Voigt P, LeRoy G, Drury W J, et al. Asymmetrically modified nucleosomes[J]. Cell, 2012, 151(1): 181-193.
[28]  Karch K R, Denizio J E, Black B E, et al. Identification and interrogation of combinatorial histone modifications[J]. Frontiers in Genetics, 2013, 4: 264.
[29]  Young N L, DiMaggio P A, Plazas-Mayorca M D, et al. High throughput characterization of combinatorial histone codes[J]. Molecular & Cellular Proteomics, 2009, 8(10): 2266-2284.
[30]  Tian Z X, Tolic N, Zhao R, et al. Enhanced top-down characterization of histone post-translational modifications[J]. Genome Biology, 2012, 13(10):R86.
[31]  Britton L M P, Gonzales-Cope M, Zee B M, et al. Breaking the histone code with quantitative mass spectrometry[J]. Expert Review of Proteomics, 2011, 8(5): 631-43.
[32]  EberlHC,MannM,VermeulenM.Quantitativeproteomicsfor epigenetics[J]. Chemical & Pharmaceutical Bulletin, 2011, 12(2): 224-234.
[33]  Allis C D, Muir T W. Spreading chromatin into chemical biology[J]. Chemical & Pharmaceutical Bulletin, 2011, 12(2): 264-279.
[34]  Horton J R, Upadhyay A K, Qi H H, et al. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases[J]. Nature Structural & Molecular Biology, 2010, 17(1): 38-43.
[35]  Seet B T, Dikic I, Zhou M M, et al. Reading protein modifications with interaction domains[J]. Nature Reviews Molecular Cell Biology, 2006, 7(7): 473-483.
[36]  Klein B J, Lalonde M E, Cote J, et al. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes[J]. Epigenetics, 2014, 9(2): 186-193.
[37]  Bailey A O, Panchenko T, Sathyan K M, et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11827-11832.
[38]  Tessarz P, Santos-Rosa H, Robson S, et al. Glutamine methylation in histone H2A is an RNA- polymerase- I- dedicated modification[J]. Nature, 2014, 505(7484): 564-568.
[39]  Greer E L, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance[J]. Nature Reviews Genetics, 2012, 13(5): 345-357.
[40]  Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease[J]. Journal of Natural Medicines, 2012, 18(8): 1194-1204.
[41]  Chi P, Allis C D, Wang G G. Covalent histone modifications: Miswritten, misinterpreted and mis-erased in human cancers[J]. Nature Reviews Cancer, 2010, 10(7): 457-469.
[42]  James L I, Barsyte-Lovejoy D, Zhong N, et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain[J]. Physical Chemistry, 2013, 9(3): 184-191.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133