Strahl B D, Allis C D. The language of covalent histone modifications[J]. Nature, 2000, 403(6765): 41-45.
[2]
Jenuwein T, Allis C D. Translating the histone code [J]. Science, 2001, 293(5532): 1074-1080.
[3]
Taverna S D, Li H, Ruthenburg A J, et al. How chromatin-binding modules interpret histone modifications: Lessons from professional pocket pickers[J]. Nature Structural & Molecular Biology, 2007, 14(11): 1025-1040.
[4]
Maurer- Stroh S, Dickens N J, Hughes- Davies L, et al. The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains[J]. Trends in Biochemical Sciences, 2003, 28(2): 69-74.
[5]
Bannister A J, Zegerman P, Partridge J F, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain[J]. Nature, 2001, 410(6824): 120-124.
[6]
Nielsen P R, Nietlispach D, Mott H R, et al. Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9[J]. Nature, 2002, 416(6876): 103-107.
[7]
Flanagan J F, Mi L Z, Chruszcz M, et al. Double chromodomains cooperate to recognize the methylated histone H3 tail[J]. Nature, 2005, 438(7071): 1181-1185.
[8]
Chen C, Nott T J, Jin J, et al. Deciphering arginine methylation: Tudor tells the tale[J]. Nature Reviews Molecular Cell Biology, 2011, 12(10): 629-642.
[9]
Huang Y, Fang J, Bedford M T, et al. Recognition of histone H3 lysine- 4 methylation by the double tudor domain of JMJD2A[J]. Science, 2006; 312(5774): 748-751.
[10]
Botuyan M V, Lee J, Ward I M, et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair[J]. Cell, 2006, 127(7): 1361-1373.
[11]
Wu H, Zeng H, Lam R, et al. Structural and histone binding ability characterizations of human PWWP domains[J]. Plos One, 2011, 6(6): e18919.
[12]
Li H, Fischle W, Wang W, et al. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger[J]. Molecular Cell, 2007, 28(4): 677-691.
[13]
Li Y Y, Li H T. Many keys to push: Diversifying the 'readership' of plant homeodomain fingers[J]. Acta Biochimica et Biophysica Sinica, 2012, 44(1): 28-39.
[14]
Iwase S, Xiang B, Ghosh S, et al. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mentalretardation syndrome[J]. Nature Structural & Molecular Biology, 2011, 18(7): 769-776.
[15]
Collins R E, Northrop J P, Horton J R, et al. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules[J]. Nature Structural & Molecular Biology, 2008, 15(3): 245-250.
[16]
Kuo A J, Song J K, Cheung P, et al. The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome[J]. Nature, 2012, 484(7392): 115-119.
[17]
Migliori V, Muller J, Phalke S, et al. Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance[J]. Nature Structural & Molecular Biology, 2012, 19(2): 136-144.
[18]
Li H T, Ilin S, Wang W K, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF[J]. Nature, 2006, 442(7098): 91-95.
[19]
Lan F, Collins R E, De Cegli R, et al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression[J]. Nature, 2007, 448(7154): 718-722.
[20]
Fiedler M, Sanchez- Barrena M J, Nekrasov M, et al. Decoding of methylated histone H3 tail by the Pygo-BCL9 Wnt signaling complex[J]. Molecular Cell, 2008; 30(4): 507-518.
[21]
Min J R, Allali-Hassani A, Nady N, et al. L3MBTL1 recognition of mono- and dimethylated histones[J]. Nature Structural & Molecular Biology, 2007, 14(12): 1229-1230.
[22]
Vakoc C R, Sachdeva M M, Wang H X, et al. Profile of histone lysine methylation across transcribed mammalian chromatin[J]. Nature Structural & Molecular Biology, 2006, 26(24): 9185-9195.
[23]
Bian C B, Xu C, Ruan J B, et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation[J]. The EMBO Journal, 2011, 30(14): 2829-2842.
[24]
Xi Q R, Wang Z X, Zaromytidou A I, et al. A poised chromatin platform for TGF-beta access to master regulators[J]. Cell, 2011, 147 (7): 1511-1524.
[25]
Wen H, Li Y Y, Xi Y X, et al. ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression[J]. Nature, 2014, 508(7495): 263-268.
[26]
Su X N, Zhu G X, Ding X Z, et al. Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1 [J]. Genes & Development, 2014, 28(6): 622-636.
[27]
Voigt P, LeRoy G, Drury W J, et al. Asymmetrically modified nucleosomes[J]. Cell, 2012, 151(1): 181-193.
[28]
Karch K R, Denizio J E, Black B E, et al. Identification and interrogation of combinatorial histone modifications[J]. Frontiers in Genetics, 2013, 4: 264.
[29]
Young N L, DiMaggio P A, Plazas-Mayorca M D, et al. High throughput characterization of combinatorial histone codes[J]. Molecular & Cellular Proteomics, 2009, 8(10): 2266-2284.
[30]
Tian Z X, Tolic N, Zhao R, et al. Enhanced top-down characterization of histone post-translational modifications[J]. Genome Biology, 2012, 13(10):R86.
[31]
Britton L M P, Gonzales-Cope M, Zee B M, et al. Breaking the histone code with quantitative mass spectrometry[J]. Expert Review of Proteomics, 2011, 8(5): 631-43.
[32]
EberlHC,MannM,VermeulenM.Quantitativeproteomicsfor epigenetics[J]. Chemical & Pharmaceutical Bulletin, 2011, 12(2): 224-234.
[33]
Allis C D, Muir T W. Spreading chromatin into chemical biology[J]. Chemical & Pharmaceutical Bulletin, 2011, 12(2): 264-279.
[34]
Horton J R, Upadhyay A K, Qi H H, et al. Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases[J]. Nature Structural & Molecular Biology, 2010, 17(1): 38-43.
[35]
Seet B T, Dikic I, Zhou M M, et al. Reading protein modifications with interaction domains[J]. Nature Reviews Molecular Cell Biology, 2006, 7(7): 473-483.
[36]
Klein B J, Lalonde M E, Cote J, et al. Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes[J]. Epigenetics, 2014, 9(2): 186-193.
[37]
Bailey A O, Panchenko T, Sathyan K M, et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11827-11832.
[38]
Tessarz P, Santos-Rosa H, Robson S, et al. Glutamine methylation in histone H2A is an RNA- polymerase- I- dedicated modification[J]. Nature, 2014, 505(7484): 564-568.
[39]
Greer E L, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance[J]. Nature Reviews Genetics, 2012, 13(5): 345-357.
[40]
Jakovcevski M, Akbarian S. Epigenetic mechanisms in neurological disease[J]. Journal of Natural Medicines, 2012, 18(8): 1194-1204.
[41]
Chi P, Allis C D, Wang G G. Covalent histone modifications: Miswritten, misinterpreted and mis-erased in human cancers[J]. Nature Reviews Cancer, 2010, 10(7): 457-469.
[42]
James L I, Barsyte-Lovejoy D, Zhong N, et al. Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain[J]. Physical Chemistry, 2013, 9(3): 184-191.