全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

燃煤电厂电除尘PM10和PM2.5的排放控制V:以660MW机组为例分析讨论高压电源运行优化

DOI: 10.3981/j.issn.1000-7857.2015.06.011, PP. 69-72

Keywords: 电除尘,细颗粒物,三相电源

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文讨论优化双室四电场电除尘器(ESP)所配套的16台中荷(ZH)三相高压电源和低压振打系统实现电除尘节能和减排。在16台传统单相高压电源供电下,电除尘出口PM10和PM2.5的排放分别为63mg/m3和23.9mg/m3,对应的高压一次电耗为1225kV·A。采用16台ZH三相高压电源改造后,电除尘出口PM10和PM2.5的排放分别为10~16mg/m3和2.0~2.5mg/m3,对应的高压一次电耗为900~1050kV·A。在同样高电压电耗下,PM10和PM2.5分别下降了78%和92%。

References

[1]  肖创英. 促进燃煤电厂烟尘超低排放[J]. 科技导报, 2014, 32(33): 12. Xiao Chuangying. Technical progress for achieving low particle matter emission from coal-fired power plant[J]. Science & Technology Review, 2014, 32(33): 12.
[2]  王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制I:电 除尘选型及工业应用[J]. 科技导报, 2014, 32(33): 23-33. Wang Shilong, Chen Ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants I: ESP sizing and application[J]. Science & Technology Review, 2014, 32 (33): 23-33.
[3]  Li X, Zhang X, Zhu J, et al. Sensitivity analysis on the maximum ash resistivity in terms of its compositions and gaseous water concentration[J]. Journal of Electrostatics, 2012, 70(1): 83-90.
[4]  Li S, Li X, Huang Y, et al. Fly ash resistivity: Influencing factors, predicting models and its impacts on electrostatic precipitator performance[M]. New Yorks: NOVA Science Publishers, 2014: 91-144.
[5]  王仕龙. 煤电厂电除尘PM10和PM2.5的排放控制II: 电除尘电源改造与 PM10和PM2.5的排放, 以660 MW机组为例[J]. 科技导报, 2014, 32(33): 34-38. Wang Shilong. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants II: Evaluation of ESP upgrading in terms of PM10 and PM2.5 emission reduction with a 660 MW generator[J]. Science & Technology Review, 2014, 32(33): 34-38.
[6]  王仕龙, 陈英, 韩平, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制III: 电除尘电源及小分区改造与PM10和PM2.5的排放(以4×330 MW机组 为例)[J]. 科技导报, 2014, 32(33): 39-42. Wang Shilong, Chen Ying, Han Ping, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants III: Application with a 4 × 330 MW power plant[J]. Science & Technology Review, 2014, 32(33): 39-42.
[7]  Du C, Yang Y, Wang J, et al. Evaluation of ESP performance via its index value[J]. International Journal of Plasma Environment Science and Technology, 2015 (in Press).
[8]  Zhu J, Zhao Q, Yao Y, et al. Effects of high-voltage power sources on fine particle collection efficiency with an industrial electrostatic precipitator[J]. Journal of Electrostatics, 2012, 70(3): 285-291.
[9]  沈欣军, 郑钦臻, 宁致远, 等. 燃煤电厂电除尘PM10和PM2.5的排放控制 IV: 采用二维PIV除尘[J]. 科技导报, 2014, 32(33): 43-50. Shen Xinjun, Zheng Qinzhen, Ning Zhiyuan, et al. PM10 and PM2.5 emission control by electrostatic precipitator (ESP) for coal-fired power plants IV: Investigation on electrostatic precipitation by means of 2D PIV technique[J]. Science & Technology Review, 2014, 32(33): 43-50.
[10]  Noda N, Makino H. Influence of operating temperature on performance of electrostatic precipitator for pulverized coal combustion boiler[J]. Advanced Powder Technology, 2010, 21(4): 495-499.
[11]  南京电力设备质量性能检验中心. NICE/P/2014-TY2014011-HB01, NICE/P/2014-TY2014012-HB01神华国能宁夏煤电有限公司鸳鸯湖 电厂静电除尘改造后性能试验[R]. 南京: 南京电力设备质量性能检 验中心, 2014. Nanjing Inspection Center of Quality Performance for Electric Power Equipment. ESP performance evaluation of Yuanyang Hu Power Plant, No NICE/P/2014-TY2014011-HB01, No NICE/P/2014-TY2014012-HB01[R]. Nanjing: Guodian Science and Technology Research Institute, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133