全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

微生物燃料电池中碳基阳极材料和表面修饰碳基阳极材料研究进展

DOI: 10.3981/j.issn.1000-7857.2015.03.018, PP. 105-109

Keywords: 微生物燃料电池,阳极材料,碳基材料,表面修饰,三维多孔结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着能源匮乏和水污染问题的加剧,迫切需要寻找新的能源开发和利用技术。微生物燃料电池(MFCs)作为一种新兴的高效生物质能利用方式,可以将有机废水中的化学能直接转化为电能,具有去污和产能双重功能。产电微生物附着的阳极对MFCs性能具有重要影响。碳基材料成本低、导电性高且生物相容性好,被广泛用于MFCs的阳极材料。分别从传统碳材料、三维多孔碳基材料、化学法表面处理改性、碳纳米材料修饰和导电聚合物修饰等方面综述了MFCs碳基阳极材料的最新研究成果,探讨了三维多孔结构和表面修饰促进MFCs产电性能的微观本质,并对碳基阳极材料的应用前景进行分析和展望。

References

[1]  Ben Liew K, Daud W R W, Ghasemi M, et al. Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: A review[J]. International Journal of Hydrogen Energy, 2014, 39(10): 4870-4883.
[2]  Franks A E, Nevin K P. Microbial fuel cells, a current review[J]. Energies, 2010, 3(5): 899-919.
[3]  Logan B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews Microbiology, 2009, 7(5): 375-381.
[4]  Logan B E, Regan J M. Microbial fuel cells: Challenges and applications [J]. Environmental Science and Technology, 2006, 40(17): 5172-5180.
[5]  Ahmad F, Atiyeh M N, Pereira B, et al. A review of cellulosic microbial fuel cells: Performance and challenges[J]. Biomass & Bioenergy, 2013, 56: 179-188.
[6]  Rabaey K, Verstraete W. Microbial fuel cells: novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298.
[7]  Ghangrekar M M, Shinde V B. Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production[J]. Bioresource Technology, 2007, 98(15): 2879-2885.
[8]  王鑫, 李楠, 高宁圣洁, 等. 微生物燃料电池碳基阳极材料的研究进 展[J]. 中国给水排水, 2012, 28(22): 5-8. Wang Xin, Li Nan, Gao Ningshengjie, et al. Research progress in carbon anode materials for microbial fuel cells[J]. China Water & Wastewater, 2012, 28(22): 5-8.
[9]  谢珊, 欧阳科, 丘露, 等. 微生物燃料电池中碳材料改性阳极和碳基 复合材料阳极的最新研究进展[J]. 广东化工, 2014, 41(10): 76-77. Xie Shan, Ouyang Ke, Qiu Lu, et al. Research progresses on the modified carbon materials and carbon-based composites in the anode materials of microbial fuel cells[J]. Guangdong Chemical Industry, 2014, 41(10): 76-77.
[10]  Zhou M, Chi M, Luo J, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435.
[11]  Kim J R, Jung S H, Regan J M, et al. Electricity generation and microbial community analysis of alcohol powered microbial fuel cells [J]. Bioresource Technology, 2007, 98(13): 2568-2577.
[12]  Wang X, Cheng S, Feng Y, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science and Technology, 2009, 43(17): 6870-6874.
[13]  Li F X, Sharma Y, Lei Y, et al. Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation[J]. Applied Biochemistry and Biotechnology, 2010, 160(1): 168-181.
[14]  Ahn Y, Logan B E. Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures[J]. Bioresource Technology, 2010, 101(2): 469-475.
[15]  Gao X, Zhang Y Z, Li X W, et al. Novel graphite sheet used as an anodic material for high-performance microbial fuel cells[J]. Materials Letters, 2013, 105: 24-27.
[16]  Chen S L, Hou H Q, Harnisch F, et al. Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells[J]. Energy & Environmental Science, 2011, 4: 1417-1421.
[17]  He G H, Gu Y L, He S J, et al. Effect of fiber diameter on the behavior of biofilm and anodic performance of fiber electrodes in microbial fuel cells[J]. Bioresource Technology, 2011, 102(22): 10763-10766.
[18]  Mink J E, Rojas J P, Logan B E, et al. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μL) microbial fuel cell[J]. Nano Letters, 2012, 12(2): 791-795.
[19]  Xie X, Yu G H, Liu N, et al. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells[J]. Energy & Environmental Science, 2012, 5(5): 6862-6866.
[20]  Karra U, Manickam S S, McCutcheon J R, et al. Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs) [J]. International Journal of Hydrogen Energy, 2013, 38(3): 1588-1597.
[21]  Manickam S S, Karra U, Huang L W, et al. Activated carbon nanofiber anodes for microbial fuel cells[J]. Carbon, 2013, 53: 19-28.
[22]  Feng Y J, Yang Q, Wang X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1841-1844.
[23]  Saito T, Mehanna M, Wang X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technology, 2011, 102(1): 395-398.
[24]  Zhou M H, Chi M L, Wang H Y, et al. Anode modification by electrochemical oxidation: A new practical method to improve the performance of microbial fuel cells[J]. Biochemical Engineering Journal, 2012, 60: 151-155.
[25]  Tang X H, Guo K, Li H R, et al. Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes[J]. Bioresource Technology, 2011, 102(3): 3558-3560.
[26]  Liu J, Liu J F, He W H, et al. Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode[J]. Journal of Power Sources, 2014, 265: 391-396.
[27]  Wei J C, Liang P, Zuo K C, et al. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells[J]. ChemSusChem, 2012, 5(6): 1065-1070.
[28]  Peng L, You S J, Wang J Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis[J]. Biosensors & Bioelectronics, 2009, 25(5): 1248-1251.
[29]  Sun J J, Zhao H Z, Yang Q Z, et al. A novel layer-by-layer selfassembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell[J]. Electrochimica Acta, 2010, 55(9): 3041-3047.
[30]  Xie X, Hu L B, Pasta M, et al. Three-dimensional carbon nanotubetextile anode for high-performance microbial fuel cells[J]. Nano Letters, 2011, 11(1): 291-296.
[31]  Zhao Y, Watanabe K, Hashimoto K. Hierarchical micro/nano structures of carbon composites as anodes for microbial fuel cells[J]. Physical Chemistry Chemical Physics, 2011, 13(33): 15016-15021.
[32]  Lamp J L, Guest J S, Naha S, et al. Flame synthesis of carbon nanostructures on stainless steel anodes for use in microbial fuel cells [J]. Journal of Power Sources, 2011, 196(14): 5829-5834.
[33]  Chou H T, Lee H J, Lee C Y, et al. Highly durable anodes of microbial fuel cells using a reduced graphene oxide/carbon nanotube-coated scaffold[J]. Bioresource Technology, 2014, 169: 532-536.
[34]  Jiang D Q, Li B K. Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs)[J]. Water Science and Technology, 2009, 59(3): 557-563.
[35]  Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources, 2007, 170(1): 79-84.
[36]  Zou Y J, Xiang C L, Yang L N, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4856-4862.
[37]  Zhao Y, Watanabe K, Nakamura R, et al. Three-dimensional conductive nanowire networks for maximizing anode performance in microbial fuel cells[J]. Chemistry-A European Journal, 2010, 16(17): 4982-4985.
[38]  Yuan Y, Zhou S G, Liu Y, et al. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for highperformance microbial fuel cells[J]. Environmental Science and Technology, 2013, 47(24): 14525-14532.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133