全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

石墨烯纤维研究进展

DOI: 10.3981/j.issn.1000-7857.2015.03.017, PP. 99-104

Keywords: 石墨烯,纤维,可控制备

Full-Text   Cite this paper   Add to My Lib

Abstract:

石墨烯具有独特的电学和力学等性能。宏观的石墨烯纤维由纳米级的石墨烯组装而成,其集成了微观石墨烯的突出性能,因而不仅具有常规纤维的柔韧性可用于纺织物,同时具有轻质、可成型加工及易于功能化等显著优势。概述了石墨烯纤维研究方面的最新进展,包括其可控制备技术、功能化及其在柔性纤维器件如驱动器、机器人、光伏电池、电容器等方面的应用。

References

[1]  Zhao Y, Jiang C C, Hu C G, et al. Large-scale spinning assembly of neat, morphology-defined, graphene-based hollow fibers[J]. ACS Nano, 2013, 7(3): 2406-2412.
[2]  Dong Z L, Jiang C C, Cheng H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24(14): 1856-1861.
[3]  Hu C G, Zhao Y, Cheng H H, et al. Graphene microtubings: Controlled fabrication and site-specific functionalization[J]. Nano Letters, 2012, 12(11): 5879-5884.
[4]  Li X M, Zhao T S, Wang K L, et al. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties[J]. The Langmuir, 2011, 27(19): 12164-12171.
[5]  Li X, Sun P Z, Fan L L, et al. Multifunctional graphene woven fabrics [J]. Scientific Reports, 2012, 2: 395.
[6]  Hu C G, Zhai X Q, Liu L L, et al. Spontaneous reduction and assembly of graphene oxide into three-dimensional graphene network on arbitrary conductive substrates[J]. Scientific Reports, 2013, 3: 2065.
[7]  Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene[J]. Nature, 2009, 458 (7240): 872-876.
[8]  Carretero-Gonzalez J, Castillo-Martinez E, Dias-Lima M, et al. Oriented graphene nanoribbon yarn and sheet from aligned multiwalled carbon nanotube sheets[J]. Advanced Materials, 2012, 24(42): 5695-5701.
[9]  Xiang C S, Behabtu N, Liu Y D, et al. Graphene nanoribbons as an advanced precursor for making carbon fiber[J]. ACS Nano, 2013, 7(2): 1628-1637.
[10]  Jang E Y, Carretero-Gonzalez J, Choi A, et al. Fibers of reduced graphene oxide nanoribbons [J]. Nanotechnology, 2012, 23(23): 235601.
[11]  Tian Z S, Xu C X, Li J T, et al. Self-assembled free-standing graphene oxide fibers[J]. ACS Applied Materials and Interfaces, 2013, 5(4): 1489-1493.
[12]  Xu Z, Liu Z, Sun H Y, et al. Highly electrically conductive ag-doped graphene fibers as stretchable conductors[J]. Advanced Materials, 2013, 25(23): 3249-3253.
[13]  Xu Z, Sun H Y, Zhao X L, et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25(2): 188-193.
[14]  Hu X Z, Xu Z, Gao C. Multifunctional, supramolecular, continuous artificial nacre fibres[J]. Scientific Reports, 2012, 2: 767.
[15]  Hu X Z, Xu Z, Liu Z, et al. Liquid crystal self-templating approach to ultrastrong and tough biomimic composites[J]. Scientific Reports, 2013, 3: 2374.
[16]  Zhao X L, Xu Z, Zheng B N, et al. Macroscopic assembled, ultrastrong and H2SO4-resistant fibres of polymer-grafted graphene oxide[J]. Scientific Reports, 2013, 3: 3164.
[17]  Zhong X H, Wang R, Wen Y Y, et al. Carbon nanotube and graphene multiple-thread yarns [J]. Nanoscale, 2013, 5(3): 1183-1187.
[18]  Cheng H H, Dong Z L, Hu C G, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(8): 3428-3434.
[19]  Meng Y N, Zhao Y, Hu C G, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles[J]. Advanced Materials, 2013, 25(16): 2326-2331.
[20]  Shin M K, Lee B, Kim S H, et al. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nature Communications, 2012, 3: 650.
[21]  Matsumoto H, Imaizumi S, Konosu Y, et al. Electrospun composite nanofiber yarns containing oriented graphene nanoribbons[J]. ACS Applied Materials and Interfaces, 2013, 5(13): 6225-6231.
[22]  Wang C, Li Y D, Ding G Q, et al. Preparation and characterization of graphene oxide/poly (vinyl alcohol) composite nanofibers via electrospinning[J]. Journal of Applied Polymer Science, 2013, 127(4): 3026-3032.
[23]  Bao Q L, Zhang H, Yang J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791.
[24]  Jiang Z X, Li Q, Chen M L, et al. Mechanical reinforcement fibers produced by gel–spinning of poly-acrylic acid (PAA) and graphene oxide (GO) composites[J]. Nanoscale, 2013, 5(14): 6265-6269.
[25]  Zhang J, Zhao F, Zhang Z P, et al. Dimension-tailored functional graphene structures for energy conversion and storage[J]. Nanoscale, 2013, 5(8): 3112-3126.
[26]  Lu L H, Liu J H, Hu Y, et al. Graphene-stabilized silver nanoparticle electrochemical electrode for actuator design[J]. Advanced Materials, 2013, 25(9): 1270-1274.
[27]  Liang J J, Huang L, Li N, et al. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene[J]. ACS Nano, 2012, 6(5): 450-4509.
[28]  Wang Y H, Bian K, Hu C G, et al. Flexible and wearable graphene/ polypyrrole fibers towards multifunctional actuator applications[J]. Electrochemical Communications, 2013, 35: 49-52.
[29]  Cheng H H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie International Edition, 2013, 52(40): 10482-10486.
[30]  Cheng H H, Hu Y, Zhao F, et al. Moisture-activated torsional graphene-fiber motor[J]. Advanced Materials, 2014, 26(18): 2909-2913.
[31]  Yang Z B, Sun H, Chen T, et al. Photovoltaic wire derived from a graphene composite fiber achieving an 8.45% energy conversion efficiency[J]. Angewandte Chemie International Edition, 2013, 52(29): 7545-7548.
[32]  Kou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics [J]. Nature Communications, 2014, 5: 3754.
[33]  Chen J M, Zou J, Zeng J B, et al. Preparation and evaluation of graphene-coated solid-phase microextraction fiber[J]. Analytica Chimica Acta, 2010, 678(1): 44-49.
[34]  Luo Y B, Yuan B F, Yu Q W, et al. Substrateless graphene fiber: A sorbent for solid-phase microextraction[J]. Journal of Chromatography A, 2012, 1268: 9-15.
[35]  Fan J, Dong Z L, Qi M L, et al. Monolithic graphene fibers for solidphase microextraction [J]. Journal of Chromatography A, 2013, 1320: 27-32.
[36]  Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2006, 6(3): 183-191.
[37]  Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.
[38]  Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
[39]  Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321 (5887): 385-388.
[40]  Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
[41]  Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011, 2: 571.
[42]  Cong H P, Ren X C, Wang P, et al. Wet-spinning assembly of continuous, neat, and macroscopic graphene fibers[J]. Scientific Reports, 2012, 2: 613.
[43]  Jalili R, Aboutalebi S H, Esrafilzadeh D, et al. Scalable one-step wetspinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: towards multifunctional textiles[J]. Advanced Functional Materials, 2013, 23(43): 5345-5354.
[44]  Chen L, He Y L, Chai S G, et al. Toward high performance graphene fibers[J]. Nanoscale, 2013, 5(13): 5809-5815.
[45]  Xiang C S, Young C C, Wang X, et al. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers[J]. Advanced Materials, 2013, 25 (33): 4592-4597.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133