全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2015 

非开挖水平定向钻孔壁稳定性

DOI: 10.3981/j.issn.1000-7857.2015.03.010, PP. 63-69

Keywords: 水平定向钻,孔壁稳定性,流-固耦合,强度折减

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于多孔介质概念,建立了孔隙度、渗透系数与体积应变的动态演化模型,给出了Mohr-Coulomb准则与Drucker-Prager准则之间的强度折减系数换算关系,以Abaqus为平台,将动态演化模型与有限元强度折减系数法相结合,研究水平定向钻孔壁稳定性。结果表明,使用不同屈服准则所得安全系数有差异,但在一定条件下可相互转换,数值分析结果与理论分析一致;研究了不同泥浆压力对孔壁稳定性的影响,指出在一定的泥浆压力下,随着泥浆压力的提高,孔壁安全系数不断降低。扩孔结束时,泥浆压力为2.4MPa时,最大塑性半径达到2.34m,孔壁处最大塑性应变达到0.393,极限平衡状态时,泥浆压力2.4MPa时,孔壁周围的最大塑性应变增加到1.208,远大于扩孔结束时的最大应变值,相应的最大塑性半径达到5.68m,约为孔径15倍。

References

[1]  Ma B, Najafi M. Development and applications of trenchless technology in China[J]. Tunneling and Underground Space Technology, 2008, 23 (4): 476-480.
[2]  Sokolovskii V V. Complete plane problems of plastic flow[J]. Journal of the Mechanics and Physics of Solids. 1962, 10(4): 353-364.
[3]  Hajiazizi M, Tavana H. Determining three-dimensional non-spherical critical slip surface in earth slopes using an optimization method[J]. Engineering Geology, 2013, 153: 114-124.
[4]  郑颖人. 岩土数值极限分析方法的发展与应用[J]. 岩石力学与工程学 报, 2012(7): 1297-1316. Zheng Yingren. Development and application of numerical limit analysis for geological materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2012(7): 1297-1316.
[5]  刘涛. 一种新的土坡稳定极限平衡分析方法[D]. 重庆: 重庆交通大 学, 2010. Liu Tao. A new limiting equilibrium method for analyzing stability of soil slope[D]. Chongqing: Chongqing Jiaotong University, 2010.
[6]  费康, 张建伟. Abaqus在岩土工程中的应用[M]. 北京: 中国水利水电 出版社, 2010. Fei Kang, Zhang Jianwei. Application of Abaqus in geotechnical engineering[M]. Beijing: Chinese Water Conservancy and Hydropower Press, 2010.
[7]  梁庆国, 李德武. 对岩土工程有限元强度折减法的几点思考[J]. 岩土 力学, 2008, 29(11): 3053-3056. Liang Qingguo, Li Dewu. Discussion on strength reduction FEM in geotechnical engineering[J]. Rock and Soil Mechanics, 2008, 29(11): 3053-3056.
[8]  郑颖人, 赵尚毅, 李安洪, 等. 有限元极限分析法及其在边坡中的应用 [M]. 北京: 人民交通出版社, 2011. Zheng Yingren, Zhao Shangyi, Li Anhong, et al. Finite element limit analysis method and its application in slope[M]. Beijing: China Communications Press, 2011.
[9]  Zienkiewics O C, Humpheson C, Lewis R W. Associated and nonassociated viscoplasticity and plasticity in soil mechanics[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1975, 25(4): 671-689.
[10]  张黎明, 郑颖人, 王在泉, 等. 有限元强度折减法在公路隧道中的应 用探讨[J]. 岩土力学, 2007, 28(1): 97-101. Zhang Liming, Zheng Yingren, Wang Zaiquan, et al. Application of strength reduction finite element method to road tunnels[J]. Rock and Soil Mechanics, 2007, 28(1): 97-101.
[11]  裴利剑, 屈本宁, 钱闪光. 有限元强度折减法边坡失稳判据的统一性 [J]. 岩土力学, 2010, 31(10): 3338-3341. Pei Lijian, Qu Benning, Qian Shanguang. Uniformity of slope instability criteria of strength reduction with FEM[J]. Rock and Soil Mechanics, 2010, 31(10): 3338-3341.
[12]  陈卫忠, 伍国军, 贾善坡. Abaqus在隧道及地下工程中的应用[M]. 北 京: 中国水利水电出版社, 2010. Chen Weizhong, Wu Guojun, Jia Shanpo. The application of Abaqus in tunnel and underground engineering[M]. Beijing: China Water Conservancy and Hydropower Press, 2010.
[13]  朱以文, 蔡元奇, 徐晗. Abaqus与岩土工程分析[M]. 香港: 中国图书 出版社, 2005. Zhu Yiwen, Cai Yuanqi, Xu Han. Abaqus and geotechnical engineering analysis[M]. Hong Kong: Chinese Book Publishing, 2005.
[14]  张晓咏, 戴自航. 应用Abaqus 程序进行渗流作用下边坡稳定分析 [J]. 岩石力学与工程学报, 2010(增1): 2927-2934. Zhang Xiaoyong, Dai Zihang. Analysis of slope stability under seepage by using Abaqus[J]. Chinese Journal of Rock Mechanics and Engineering, 2010(Suppl 1): 2927-2934.
[15]  李培超, 孔祥言, 卢德唐. 饱和多孔介质流固耦合渗流的数学模型 [J]. 水动力学研究与进展, 2003, 18(4): 419-426. Li Peichao, Kong Xiangyan, Lu Detang. Mathematical modeling of flow in saturated porous media on account of fluid-solid coupling effect[J]. Journal of Hydrodynamics, 2003, 18(4): 419-426.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133