全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科技导报  2014 

基于氮气吸附法的渝东南下寒武统页岩孔隙的分形特征

DOI: 10.3981/j.issn.1000-7857.2014.19.008, PP. 53-57

Keywords: 渝东南,页岩,分形维数,氮气吸附法,双重分形

Full-Text   Cite this paper   Add to My Lib

Abstract:

分形维数是多孔介质不规则程度的度量,以渝东南下寒武统页岩的氮气吸附法测量结果为研究对象,采用FHH模型的分形维数计算方法,得到渝东南下寒武统页岩的分形维数。研究结果表明,渝东南下寒武统页岩孔隙的分形维数具有明显孔径分界点,即具有双重分形特征,小孔隙分形维数D1变化范围在2.3559~2.6577,平均值为2.488,大孔隙分形维数D2变化范围在2.5971~2.8746,平均值为2.7631;大孔隙分形维数的平均值大于小孔隙分形维数的平均值,说明大孔隙结构的复杂程度大于小孔隙结构的复杂程度;页岩孔隙的分形维数与有机碳(TOC)含量、吸附气量、比表面积和孔容呈正相关,其中与孔隙的比表面积和孔容的相关性显著,而与黏土矿物含量呈弱负相关。

References

[1]  陈杰, 周改英, 赵喜亮, 等. 储层岩石孔隙结构特征研究方法综述[J]. 特种油气藏, 2005, 12(4): 11-14. Chen Jie, Zhou Gaiying, Zhao Xiliang, et al. Overview of study methods of reservoir rock pore structure[J]. Special Oil & Gas Reservoirs, 2005, 12(4): 11-14.
[2]  Pfeiferper P, Avnir D. Chemistry nonintegral dimensions between two and three[J]. The Journal of Chemical Physics, 1983, 79(7): 3369-3558.
[3]  Katz A J, Thompson A H. Fractal sandstone pores: Implication for conductivity and formation[J]. Physical Review Letters, 1985, 54(3): 1325-1328.
[4]  Krohn C E. Fractal measurements of sandstone, shales and carbonates[J]. Journal of Geophysical Research, 1988, 93(B4): 3297-3305.
[5]  Tsakiroglou C D, Payatakes A C. Characterization of the pore structure of reservoir rocks with the aid of serial sectioning analysis, mercury porosimetry and network simulation[J]. Advances in Water Resources, 2000, 23(7): 773-789.
[6]  Radlinski A P, loannidis M A, Hinde A L, et al. Angstrom to millimeter characterization of sedimentary rock microstructure[J]. Journal of Colloid and Interface Science, 2004, 274(2): 607-612.
[7]  张宸恺, 沈金松, 樊震. 应用分形理论研究鄂尔多斯MHM油田低孔渗 储层孔隙结构[J]. 石油与天然气地质, 2007, 28(1): 110-115. Zhang Chenkai, Shen Jinsong, Fan Zhen. Pore structure study of low porosity and permeability reservoirs in MHM oilfield of Ordos Basin with fractal theory[J]. Oil & Gas Geology, 2007, 28(1): 110-115.
[8]  陈亮, 谭凯旋, 刘江, 等. 新疆某砂岩铀矿含矿层孔隙结构的分形特征[J]. 中山大学学报: 自然科学版, 2012, 51(6): 139-144. Chen Liang, Tan Kaixuan, Liu Jiang, et al. Pore structure fractal features of the ore-bearinglayer from a sandstone-type uranium deposit, Xinjiang[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 139-144.
[9]  安士凯, 桑树勋, 李仰民, 等. 沁水盆地南部高煤级煤储层孔隙分形特 征[J]. 中国煤炭地质, 2011, 23(2): 17-21. An Shikai, Sang Shuxun, Li Yangmin, et al. Study on pore fractal characteristics of high-rank coal reservoirs in Southern Qinshui Basin[J]. Coal Geology of China, 2011, 23(2): 17-21.
[10]  杨宇, 孙晗森, 彭小东, 等. 煤层气储层孔隙结构分形特征定量研究[J]. 特种油气藏, 2013, 20(1): 31-33. Yang Yu, Sun Hansen, Peng Xiaodong, et al. Quantitative ctudy on fractal characteristics of the structure of CBM reservoir[J]. Special Oil & Gas Reservoirs, 2013, 20(1): 31-33.
[11]  胡琳, 朱炎铭, 陈尚斌, 等. 蜀南双河龙马溪组页岩孔隙结构的分形 特征[J]. 新疆石油地质, 2013, 34(1): 79-82. Hu Lin, Zhu Yanming, Chen Shangbin, et al. Fractal characteristics of shale pore structure of longmaxi formation in shuanghe area in Southern Sichuan[J]. Xinjiang Petroleum Geology, 2013, 34(1): 79-82.
[12]  Curtis J B. Fractured shale-gas systems[J]. AAPU Bulletin, 2002, 86 (11): 1921-1938.
[13]  Ross D J K, Bustin R M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J]. Marine and Petroleum Geology, 2009, 26(6): 916-927.
[14]  Avnir D, Jaroniec M. An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir, 1989(5): 1412-1433.
[15]  韩双彪, 张金川, 杨超, 等. 渝东南下寒武页岩纳米级孔隙特征及其 储气性能[J]. 煤炭学报, 2013, 38(6): 1038-1043. Han Shuangbiao, Zhang Jinchuan, Yang Chao, et al. The characteristics of nanoscale pore and its gas storage capability in the Lower Cambrian shale of Southeast Chongqing[J]. Journal of China Coal Society, 2013, 38(6): 1038-1043.
[16]  Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of American Chemistry Society, 1938, 60: 309-319.
[17]  Barrett E P, Joiner L G, Halenda P P. The determination of pore volume and area distributions in porous substances I: Computations from nitrogen isotherms[J]. Journal of American Chemistry Society, 1951, 73(1): 373-380.
[18]  Cai Y, Liu D, Pan Z, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel, 2012, 103: 258-268.
[19]  Yao Y, Liu D, Tang D, et al. Fractal characterization of adsorptionpores of coals from north China: An investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology, 2008, 73 (1): 27-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133